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ABSTRACT1
RESONANT NONLINEAR OPTICAL PROCESSES

IN LOWER DIMENSIONAL ELECTRONIC SYSTEMS

I
I

I Optical bistability is a quantum optical realization of a first order phase transition

far from equilibrium. A nonlinear optical material contained in an optical cavity

I driven resonantly by an external coherent optical field undergoes a first order phase

transition to a new nonequilbrium stationary state of broken symmetry. Resonant

and nonresonant nonlinear optical response of 7r-electron excitations in conjugated

electronic structure provides t' e nonlinearity essential to the onset of bistability.

Electronic correlation effects in reduced dimensions are responsible for nonresonant

I nonlinear optical responses. Saturable absorption studies of glassy polymer films

consisting of quasi-two dimensional conjugated disc-like structure of silicon naph-

I thalocyanine demonstrate that on-resonance the system behaves as an optical Bloch

system with an intensity dependent refractive index of 1 x 10 - 4 cm 2/kW. Based on

I the results of these studies, electronic absorptive optical bistability is obeserved on

a nanosecond time scale in a nonlinear Fabry-Perot interferometer employing the

I saturable absorbing silicon naphthalocyanine film as the nonlinear optical medium.
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CHAPTER 1 I

INTRODUCTION I
Nonequilibrium systems may exhibit instabilities that are analogous to phase 3

transitions in thermodynamic equilibrium systems. Thus, when an open system is

driven far from equilibrium by an external source, it may change either continuously, I
or discontinuously, from an initial disordered state of independent atomic motion to

a macroscopic ordered state of cooperative motion. This instability occurs only in I
the presence of nonlinear interactions between the atoms and the external field. A

major physical realization of such instability phenomena is bistable transmission in

a nonlinear optical system where an external coherent optical field resonantly drives 3
a nonlinear optical material contained in an optical cavity to new nonequilibrium

stationary states of broken symmetry.

Optical bistability can be generally understood as quantum optical analog

of a first order phase transition of a thermodynamic equilibrium system, and the

two dimensional Ising spin system in an external magnetic field has an almost

identical formal analogy to optical bistability. According to the mean field theory I
of a ferromagnetism, the Ginzburg-Landau potential F(0) is given by

(kT -J 7 )€ kT 1
F(O) = -HO + + +.-..y)(o2+1.1)

2 12

where H is the external magnetic field, € is the magnetization (order parameter), J

is coupling constant, and -y the number of nearest neighbors. The state equation for 3
a ferromagnet in an external field is determined by minimizing the potential F(O).

kT3 (1.1.2) I
3

with Tc = J-y/k. Below Tc, a first order phase transition takes place, and the mag- I
netization (order parameter) shows hysteresis behavior upon increase and decrease

of the exeternal field.

I



Certain nonlinear optical systems in Fabry-Perot cavity configurations may

exhibit a similar phase transition when resonantly driven by a coherent optical field

from a disordered fluorescent state to a macroscopic ordered, coherent state. The

output field intensity transmitted through the system shows hysteresis behavior

upon change of the incident light intensity. A quantum optical instability, however,

is not a phase transition in a thermodynamic equilibrium system in which a Gibbs

ensemble can be introduced and a thermodynamic potential can be defined. In-

stead, optical bistability is one example of a phase transition that occurs far from

equilibrium, where a nonlinear interaction between the system and external field

is essential to the onset of the instability. This can be illustrated by the nonlinear

optical response of an optical Bloch system to a coherent optical field, where the

Bloch susceptibility, X(w), is expressed as

O 0c )+ A + iX(w,) = ( )1/I ) (1.1.3)
4irw 1±+ 2 +I/I,)

where A = (w - wa)T2, the difference between the optical frequency and atomic

resonance frequency. As appears in the denominator, the dipole moment induced

in an optical Bloch system is a nonlinear function of the incident light intensity.

In contrast to a thermodynamic equilibrium phase transition, the absence in a

nonequilibrium system of a thermodynamic potential, such as a free energy, makes

it difficult to describe a phase transition far from equilibrium. In a quantum optical

system such as the optical Bloch system, however, a generalized Ginzburg-Landau

potential can be defined through a Fokker-Planck equation which is equivalent to a

Maxwell-Bloch equation describing a resonant nonlinear optical process in the Bloch

system contained in a Fabry-Perot cavity. In steady state, a bistable transmission

in a nonlinear optical system can be described by a generalized Ginzburg-Landau

potential, F(z).
2 1

F(z) = f{_(z - )2 + Cln(1 + z 2 )} (1.1.4)
q 2

where the transmitted output optical field amplitude z is the order parameter, the

incident coherent optical field amplitude y is the external field, C is the cooperativity

2



of the nonlinear optical system, in analogy to temperature in an equilibrium system,

and q is a measure of stochastic force destroying the macroscopic long range order

of microscopic optical dipole moments. The corresponding state equation is then

2Cxy z 2 (1.1.5)5

1 + X2

For a nonlinear optical system with a large enough cooperativity, which is analogous

to an Ising spin system at a temperature below Tc, the transmitted output field

amplitude z (order parameter) can be either in a low transmittance state or in a

high transmittance state for a given incident light intensity depending on whether

the incident light field intensity y (external field) is increased or decreased. I

The first experimental observation of optical bistability was made in sodium I
vapor in a Fabry-Perot cavity.II[2 1 Since then, optical bistabilty studies have flour-

ished to become one of the main subjects of study in nonlinear optics. Bistable

behavior has been experimentally observed in various forms of materials that in-

clude atomic gases, semiconductors, Kerr liquids, and liquid crystals. Each material

system provides a special condition or regime of bistability. Many theoretical stud-

ies are currently focused on the connection with nonlinear dynamics, and optical

bistability is providing superior experimetal realizations of theoretical modeling for 5
nonlinear instabilities such as bifurcation and chaos. |I

The major studies of this report are experimental and theoretical studies of

optical bistability phenomena mediated by a resonant third order optical response I
function of random glassy polymer films. These studies have led to the discovery of

the important case of absorptive optical bistability occurring through the nonlinear

electronic excitations in a random solid medium. The medium consists of quasi-two 5
dimensional conjugated discs randomly distributed in a glassy matrix. The report

is thus organized as follows. 3
31
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Chapters 2 and 3 combine to describe a quantum optical phase transition.

jIn Chapter 2, a thermodynamic phase transition in both equilibrium and nonequi-

librium states is reviewed. In a linear nonequilibrium system, no phase transition

jcan take place according to the minimum entropy production theorem. When a

thermodynamic force acting on a nonequilibrium system is increased, a nonlinear

I response of the system to a thermodynamic force should be accounted for, and a

nonlinear interaction gives rise to a phase transtion, causing the system assume

a new, ordered, symmetry broken state. A detailed description of nonequilibrium

phase transitions is presented in Sec.2.1.

In Sec.2.2, this understanding is applied to a nonlinear optical system, and

optical bistability is discussed in analogy to a two-dimensional Ising spin system.

Maxwell-Bloch equations describing the resonant nonlinear interaction between an

optical Bloch system and coherent optical field are introduced. In adiabatic follow-

ing, where the microscopic atomic dipole field follows a macroscopic optical field

(order parameter), the Maxwell-Bloch equations can be reduced to a single Langevin

equation for the macroscopic optical field (order parameter) and the incident coher-

ent optical field (external field). When the stochastic force is assumed to be white

noise, the Langevin equation can be reformulated into a Fokker-Planck equation

for the probability distribution function of the order parameter for the given ex-

ternal field. In a stationary state, the generalized Ginzburg-Landau potential can

be introduced to describe a phase transition far from equilibrium. A cooperative

parameter, C, is found to be equivalent to the temperature in a thermodynamic

equilibrium system. For C larger than 4, a phase transition is allowed, resulting in

bistable transmission behavior upon increase and decrease of the external coherent

optical field.

In Chapter 3, a microscopic mg.ny-electron description of third order opti-

cal susceptibilities of conjugated organic structures is reviewed for one dimensional

chain and extended to two dimensional cyclic chain structure. In a nonresonant

4
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regime, a quantum mechanical perturbative expansion of the response function is

allowed, leading to an analytical expression for the microscopic nonlinear optical

susceptibility. Virtual excitations of highly correlated ir-electrons are found to be

responsible for unusually large nonlinear optical responses. For a cyclic chain struc-

ture, it is found that the isotropic, averaged value of the third order suscpetibility is

much smaller than the corresponding linear chain, simply because of the reduction n

in the effective length for ir-electron motion. The discussion then turns to a resonant

nonlinear optical processes in Sec.3.4-7. In a resonant process, a real population of 3
excited state occurs, and the change in population of the ground and excited states

is actually a nonlinear optical response which can be described by a Bloch suscep- I
tibility. The Bloch equation of motion is derived, and transient processes of optical

Bloch systems are reviewed. In steady state, a simple Bloch susceptibility can be

defined, which leads to an intensity dependent refractive index n2 . In quasi-two di-

mensional conjugated structures, we demonstrate that resonant i'-electron optical

excitations exhibit exceptionally large value of n 2. 3
In Chapter 4, we first present the results of experimental and theoretical

studies of the linear optical excitations of random glassy polymers. After a linear

absorption spectrum is described in Sec.4.1, a study of an optical line broadening

is presented based on irreversible statistical mechanics. Line broadening in a solid

comes from the interaction of an optical site with phonons. The microscopic line

broadening mechanism is manifested in the characteristic temperature dependence

of the homogeneous linewidth. In order to obtain an analytic expression for a ho-

mogeneous linewidth, a general line shape theory is discussed in terms of projection

operator formalism, in Sec.4.2-3. With a specific stochastic process, the charac- I
teristic line shape is obtained; for example, in a Markoffian process, a Lorentzian

line shape results. When the short m.mory approximation is taken as in Sec.4.4,m

the memory function which is directly related to the line shape can be expanded

in the interaction Hamiltonian between an optical site and the phonons. In later

5I I
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sections, a specific example of line broadening is presented. First, the temperature

Idependence of the homogeneous line width is calculated for an optical site in a crys-

talline field in order to show that in a random glassy medium, the line broadening

Imechanism is quite different from the crystal case. Low excitation energy TLS's

(two level system) are distributed in the random medium and are responsible for

jthe characteristic physical properties of glassy systems such as a glass or polymer

matrix. The TLS model is described in Sec.4.6, and an analysis of the temperature

jdependence of the linewidth for optical sites in a random glassy medium is presented

in Sec.4.7.

Chapter 5 addresses the major subject of nonlinear optical excitations in ran-

dom glassy polymers. First, the results of numerical simulation studies of dynami-

cal transmission in a saturable absorber are presented in Sec.5.2. Then intersystem

crossing between electronic states in conjugated organic structures is discussed.

Spin-orbit coupling is responsible for the intersystem crossing between singlet and

triplet manifolds, and the strength of intersystem crossing depends on the atomic

number of key atoms in our molecular structure. Experimental results for glassy

polymer films of the silicon- naphthalocyanine (SINC) disc-lEke structure are pre-

sented and discussed in Sec.5.4-5. Saturable absorption experiments are perfomed

on three different forms of samples (pure SINC thin film, SINC solid solution thin

Ifilm, and SINC liquid solution) at various laser pulse widths. In the short pulse

regimes of picoseconds and nanoseconds, a gas Raman cell was utilized to generate

Ia coherent light near sample linear absorption peak, while an acousto- optical modu-

lator processesed CW dye laser was employed in the long pulse regime (microseconds

to seconds). The measured saturation threshold powers for thin films at different

pulse widths are found to agree with the theoretical predictions from the dynamical

transmission calculations. From the measured threshold power for saturation, the

intensity dependent refractive index n 2 was obtained. The experimental nhserva-

tion of the same saturation behavior of a pure SINC film and a SINC solid solution

j 6
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film at picosecond time scales lead to the important conclusion that the on-site I
ir- electron excitations of individual molecule sites are responsible for the resonant

nonlinear optical response of SINC thin films. The dispersion of saturable absorp-

tion was also measured throughout the inhomogeneous, site-broadened, Gaussian I
absorption band, and was analyzed by Kramers-Kronig relations to obtain the real

part of the nonlinear optical susceptibility.

In Chapter 6 after a standard Fabry-Perot interferometer is briefly described,

steady state optical bistability in the dispersive and absorptive regimes is discussed 3
in Sec.6.2-3 based on the general analytical expression of the transmission function

of a nonlinear Fabry-Perot cavity containing an optical Bloch system. Transient

behavior of optical bistability is briefly described in connection with nonlinear dy-

na mical studies. In Sec.6.5, the optical bistability experiments perfomed on SINC I
thin films are presented. In the optical bistability experiment, a single longitudinal

mode of a laser pulse was essential to directly observe a hysteresis behavior of the

transmitted light intensity that results from the nonlinear electronic excitations in 3
SINC thin films. A Ti:sapphire laser was found to be ideal for this purpose, and

is described in Sec.6.5.1. The observed absorptive optical bistability at nanosecond 3
time scales is discussed based on the physical model for optical excitations in a

random glassy medium introduced in Chapter 4. Also presented are results in the 3
long pulse regime for thermal effects. In the long laser pulse regime, a local heating

of the thin film sample is responsible for the observed dispersive bistability, which 3
is completely different from the short nanosecond pulse, electronic behavior.

Chapter 7 is the concluding chapter. Appendix contains detailed mathemat- I
ical formalisms appearing in the text.
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CHAPTER 2

NONEQUILIBRIUM PHASE TRANSITION: OPTICAL BISTABILITY J
Optical bistability (0.B.)[1H-[41 is a third order nonlinear optical process due J

to changes in the intensity dependent refractive index of a nonlinear optical material

contained inside a Fabry-Perot (F-P) cavity. A F-P interferometer with a cavity 3
spacing tuned to the incident light frequency becomes detuned when the light inten-

sity inside the cavity is increased because the change in the refractive index causes I
an additional phase change in the propagation of optical wave. The transmission

of the nonlinear F-P is a highly nonlinear function of the input light intensity with

the actual functional form depending on several important parameters such as the I
initial cavity phase setting, the atomic detuning, and the temporal response of the

nonlinear optical medium.

O.B. has been one of the main subjects of study in nonlinear optics in recent

years. Szoeke et al. sJ and Seidal" 1 were the first to propose that a saturable absorber I
inside a F-P cavity(Figure 2.1) can exhibit an O.B. behavior. The first observation

of bistability was made in sodium vapor in 1976. 71 Sodium vapor has well-known

sharp atomic transitions called D-Iines ( D1 ; 589.6 nm, D2 ; 589.0 nm ), and when a

single longitudinal mode of a CW dye laser is tuned near resonance of these lines, the I
sodium vapor can be treated as an effective two-level system exhibiting a nonlinear

optical response. The transmitted power through the nonlinear F-P containing

the sodium vapor showed bistable behavior upon the increase and the decrease of

the incident power. Because the maximum bistable effect was observed with the

initial cavity detuning set to a nonzero value, it is attributed to the dispersive effect

of the nonlinear susceptibility, and is thereby refered to as dispersive bistability.

The search for nonlinear optical matefials related to the optical bistability lead to

the study of various forms of materials including ruby crystal, ("I liquid crystals,

191-1,5 semiconductors, ['61[1] multiple quantum well structures (MQW) (Figure 3

9I
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2.2), [181-[251 Kerr liquids, [261-[29] and liquid solutions of organic dyes. [30]-[32]

Immediatly after the suggestion of utilizing the standard nonlinear F-P con-

figuration for O.B., different configurations were explored. One is the hybrid, or

I electrooptical O.B., L331d[35 where the feedback of the light intensity into the non-

linear optical material is provided through an electrooptical crystal rather than

Ithrough F-P mirrors (Figure 2.3). Another proposed configuration is a thin film of

nonlinear optical material (Figure 2.4). [361-41] When the incident angle is set at

I the critical angle for total internal reflection, a change in the refractive index takes

place for the high intensity, and the critical angle changes accordingly, destroying

total internal reflection.[6 ] Upon decrease of the incident light intensity, multiple

reflections between the nonlinear optical thin film boundaries provide a feedback

mechanism, resulting in hysteresis behavior. In this thesis, we restrict our discussion

to the standard nonlinear F-P cavity configuration.

Multistability and hysteresis behavior of physical systems are well-known in

statical physics of phase transitions, and they are general features of the first-order

phase transition. One simple example is the well-known case of Van-der-Waals

gas. Below the critical temperature for the first-order phase transiton, the molar

density is a bistable fuction of the pressure between pi and p2 (Figure 2.5), and

the metastable state such as supercooling can be observed easily in the experiment.

Quite strikingly, O.B. also can be understood in terms of the nonequilibrium first-

order phase transition, which will be discussed in Sec.2.1.

The nonlinear optical response of the optical Bloch system inside a F-P in-

terferometer is discussed in Sec.2.2 by showing the solution to the Maxwell-Bloch

equation and the transmission function characteristic of bistable behavior. The

bistable behavior is most clearly described by a generalized Ginzburg-Landau po-

tential which can be introduced through a Fokker-Planck equation, equivalent to

the Maxwell-Bloch equation in an adiabatic following approximation. A physical

condition for the realization of optical bistability is also examined.

10
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2.1 Optical Bistability as a Nonequilibrium First Order Phase Tran- I
sition

In this section, we discuss the analogy between quantum optical processes

and thermodynamic phase transitions. In optical processes, we can make distinc- I
tion between spectroscopy and quantum optics, the difference between them lying

in the fact that in spectroscopy the optical properties of an individual molecule I
are studied independent of the other nearby molecules, while in quantum optics

there is a characteristic cooperative effect coming from the coherent dipole radi-

ation of many molecules mediated through an intense, coherent, monochromatic 3
optical field. These quantum optical effects, which include laser threshold, super-

fluorescence, parametric or Raman-Stokes oscillators, and O.B., belong to a station-

ary nonequilibrium state with a broken symmetry, and there exists a close formal

analogy with thermodynamic equilibrium phase transtions.[ 2 1  1

First, we briefly review equilibrium thermodynamic phase transitions.[4 3 ] - [4 4]

The second law of thermodynamics states that an isolated closed system at ther- -
modynamic equilibrium will be in a state of maximum entropy. The system in

nonequilibrium evolves to the maximum entropy state in time. I
dS > 0 (2.1.1)

The maximum entropy state means that the system is in its most disordered state,

and, hence, we cannot expect any macroscopic ordering or coherence for an isolated U
system. When a system is allowed to exchange energy with a heat reservoir, the

closed system at equilibrium has a minimum Helmholtz free energy F,

F = U - TS (2.1.2)

and the probability that the system is at an energy 1 '-tween E and E + dE is given

by the canonical distribution.

P oc g(E) exp(- ) (2.1.2)

11 U
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I
where g(E) is the density of states. The canonical distribution in equilibrium cor-

I responds to the maximum entropy state under the restriction that the temperature

is kept constant through energy exchange with the heat reservoir. That is, for a

closed system in equilibrium,

dSquilibrium closed system = 0 (2.1.3)

or equivalently,

dS = -FIgT, V = 0(..)

Even if the system reaches the maximum entropy state in equilibrium, we find

that there is a possibility of realizing a macroscopic ordering or coherence in the

system in a canonical distribution when the temperature is lowered. The canonical

distribution states that as the temperature is decreased, the energy levels with

lower energy has a larger probability to be occupied than the energy levels with

higher energy, suggesting that the system will be in a less disordered state because

a fewer number of the energy levels are occupied. If we look at the free energy F,

we find that the contribution of the entropy term in the free energy decreases as

temperature is decreased, which permits a phase transition from a disordered state

I (where the entropy term is dominant) to an ordered state (where the internal energy,

or the interaction between the molecules comprising a thermodymanic macroscopic

system, is dominant). From these considerations, we find that a phase transition in

a thermodynamic equilibrium comes from a competition between the intermolecular

I interactions and the entropy. In another words, the emergence and maintenance of

a macroscopic ordering, or coherence, in a closed system at equilibrium is a result

I of the cooperative effect of intermolecular interactions winning over the disorder

favored by the maximum entropy. From this consideration, we can draw some

I important conclusions that a closed syetem with an infinite entropy cannot undergo

a phase transition at finite temperature as long as the intermolecular interaction

is short range (this corresponds to a one-dimensional Ising spin system), and a

I 12
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system having no intermolecular interactions cannot undergo a phase transition

because cooperative effects between molecules are absent (this coresponds to an

ideal gas).

One of the best known examples of an equilibrium thermodynamic phase I
transition is the Ising model for a spin system where the spins can be either up NT

or down N, and the interaction between spins are restricted to nearest neighbors.

When an Ising system is placed in an external magnetic field H, the Hamiltonian

for the ferromagnetic system is

E = -J E SiSj - H Si (2.1.6)
Th.nI

where J > 0 is the coupling constant between spins. In the mean field approximation

(in fact, this corresponds to the zeroth approximation,) the expectation value of an I
individual spin is replaced by the average value of the spins. With the average value

of the spin defined as the order parameter € of the system,

€=N T - N1j 1N NN - s (2.1.7)

the internal energy E coming from the nearest neighbor interaction is 3
E= 2-

where N is the total number of spins, and -f is the number of nearest neighbor spins

for a given spin. The entropy of the system can be accounted for just from a simple I
combinatorics.

S = kIn N! (2.1.9)
{l(1 + )}!{N(1 - OW

Substituting the internal energy and the entropy into the free energy and expanding

F in the order parameter 4 up to fourth order, we get the free energy, F, as follows.

F _ J 2 -'Ho+ IkT n(l++0)+ In(I-€)-In2}
N 2 2 2(kT-.y) 2 kT

(kT - J-) ' + + (2.1.10) I

13 1
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I The expression for the free energy shows that there is a competition between the

I internal interaction energy (cooperative effect) and the entropy (maximum disor-

der). As will be discussed later, the coefficient for the term which is second order

I in the order parameter 0 determines the transition behavior of the system, and in

this case, the critical temperature is simply the product of the coupling constant,

J, and the number of the nearest neighbors, y. We see that for strong coupling

or a large number of nearest neighbors, the critical temperature is high, which

means that large cooperative effects between the spins increase the critical tem-

perature. It is well known that the mean field approximation is quite misleading

I in the one-dimensional Ising spin system since an exact calculation shows that no

phase transition occurs in the one-dimensional Ising system, where only nearest

neighbor, or a short range interaction is assumed to exist. The one-dimensional

I Ising spin system is exactly soluble by transfer matrix method, and no spontaneous

magnetization occurs in the 1-D Ising spin system except at T=O. In the mean

field approximation, however, the existence of a long range interaction is assumed

in the beginning when an order parameter is introduced, thereby predicting a phase

I transition at a finite temperature, and the mean field approximation gets better as

the dimensionality increases. In a physical system with the spatial dimension larger

I than one, the local statistical fluctuation of spin alignment becomes uncritical in

determining the macroscopic thermodynamic order parameter, simply because, in

I the thermodynamic limit, the number of spins involved in the fluctuation becomes

negligible compared to the total number of spins.

According to classical Landau theory of phase transitions, the macroscopic

state of a physical system is described by an order parameter 0, and the equilibrium

value of 0 is determined through minimizing the Landau-Ginzburg potential F, or

equivalently maximizing the probability distribution function f below and above
the critical temperature Tc. The probability distribution function f is defined as

I f(, T) = N exp(-F(O, T)/kT). (2.1.11)

I 14
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The generally accepted (until the development of modem theory of critical phenom- I
ena initiated by Kadanof 45 ] and Wilson 4 1i) assumption is that the free energy F

is analytic function of the order parameter 0, and hence, can be expanded in terms

of 4 near the phase transition temperature, yielding

fl , )= (O ) (T) 0 2 + (T) o3 + O(T)0 + (21.12)F(4',T) F(O,T)+(2)+ 3) 4 +... (2..)

For an equilibrium stable system,/3 is always positive, while -y vanishes for a second-

order phase transition, and is non-zero for a first-order phase transition. Since the

order parameter 4 corresponding to the minimum of F changes as the sign of a 3
changes, the transition point is determined by the equation a(T) = 0, and, near

this point, a(T) can be expanded as an integral power of T - T,.

a(T) cx (T - T,) (2.1.13)

As shown, for example, in the case of a second order phase transition in Figure(2.6),

the free energy curve flattens as T approaches Tc continuously, leading to a bifurca-

tion and breaking of inversion symmetry of the system below Tc. For T just above

Tc, the flattening of the free energy curve means that the susceptibility XT of the

system diverges, I
XT 1  (2.1.14)

resulting in a critical slowing down. That is, when a small external field is applied to

the system, a macroscopic large scale fluctuation takes place in the order parameter,

and the system cannot return quickly back to the equilibrium state. As shown

earlier, the well-known example of a second order phase transition is the spontaneous

magnetization of an Ising spin system, or the paramagnetic to the ferromagnetic

phase transition. When the mean field approximation is adopted and the average I
value of the spin magnetization is assumed as the order parameter, the free energy

has the Landau-Ginzburg potential form. I
15 3
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In a first order phase transition (y' 0), the order parameter changes abruptly

as the temperature is lowered below the critical temperature, and the entropy, or

equivalently the first derivative of free energy, is discontinuous(Figure 2.7). There

are abundant examples of first order phase transitions in equilibrium statistical

mechanics. The best-known example, of course, is the gas-liquid phase transition.

When the order parameter is plotted against temperature and the path of the order

parameter is studied as a function of temperature, it is easily seen that a hystere-

sis behavior occurs between temperature and free energy as shown in Figure(2.8).

For a fixed temperature below T,(ci < 0), there exists a hysteresis relation for an-

other set of parameters; that is, between the order parameter and the parameter

describing the external force, for example, pressure for the gas-liquid phase transi-

I tion.( Figure(2.5))

It is well-established that the properties of a phase transition change when a

thermodynamic system is subject to an external field whose action depends on the

* value of the order parameter ). The application of an external field is accounted for

by introducing the perturbation Hamitonian into the free energy. In general, the

perturbation Hamiltonian is linear in the value of the order parameter, and because

a linear term is present, the system undergoes a first order phase transition when

the temperature is lowered. However, the apprearance of a linear term in the free

energy means that 4 is nonzero for any magnitude of the field, however weak, for

_ all temperatures. Thus, the symmetry of the system is always broken as long as

the external field is present, and the difference between the two phases for T > Tc

and T < T, disappears. Consequently, there is no discrete phase transition and the

first order phase transition is smoothed out. In our discussion, we shall see that,

most remarkably, the case of a ferromagnetic system in an external magnetic field

has an almost identical formal analogy with O.B..1601[16l

We recall that according to the mean field theory of a ferromagnetism, the

i probability density f(4,) of the magnetization 4, for a ferromagnet placed in an

!16
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external magnetic field H is the canonical distribution.

f(O) = Nexp(-F(O)/kT). (2.1.15)

where the Landau-Ginzburg potential F(O) is given by i

F(O) = -HO)+-2 2 +- 4 (2.1.16)
2 4

and is plotted in Figure 2.9. The ensemble average of the magnetization is defined

as the expectation value of 4) with respect to the probability density f(4)).

(4)) = f Of ()d4) (2.1.17)

In the classical theory of phase transitions, the average value of the order parameter

is assumed to be identical to the most probable value of the order parameter which

corresponds to the minimum of the Landau-Ginzburg potential. Therefore, the

state equation for a ferromagnet in an external field is determined by putting the

derivative of the potential with respect to the order parameter equal to zero,

0a(4) F(())) = 0 (2.1.18) 3
From Eq.(2.1.16) the state equation is then simply

H = a() + 0(0)3 (2.1.19) I
or,

H = k(T - Tc)()) + kT(4 )3  (2.1.20)

with T, = J-//k. Above To, a > 0, the system exhibits paramagnetism, and there 3
exists only one value of (40) for a given H. That is, the order parameter is mapped

to the external field one-to-one. Belowv T,, a < 0, a first order phase transition 3
takes place, and the order parameter shows hysteresis behaviour upon increase and

decrease of the exeternal field. See Figure (2.10). 3
17 3
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Similar symmetry changing phase transitions are observed in systems far

from thermal equilibrium. 14' -- "s] In a system in contact with more than one heat

reservoir each having a different temperature, the reservoirs impose external forces

l and energy fluxes on the system, preventing it from reaching a thermal equilibrium

state. In such systems, a macroscopic structural change takes place toward a lower

l symmetry state, such as, spatial anisotropy, when all of the states belonging to a

high symmetry (for example, homogeneity and isotropy) become unstable.

In order to understand the phase transition mechanism in a system far

from thermal equilibrium, we shall recall a few key thermodynamic properties of a

nonequilibrium system. In a nonequilibrium closed system, the entropy change is

not zero, and the system changes to the maximum entropy state in time through

the exchange of energy with the heat reservoir. The system is said to be undergoing

an irreversible process because the entropy of the system keeps on increasing; that
is,

I dSnoequil. closed aatem ing e ,es. > 0 (2.1.21)

The nonequilibrium state is unstable in the sense that the system cannot remain

I in nonequilibrium indefinitely. When the system is perturbed by a thermodynamic

I fluctuation, it reestablishes the thermodynamic equilibrium.

Now suppose that we have a system in thermal contact with more than one

I heat reservoir, each having a different temperature. The heat reservoirs keep the

system from reaching thermal equilibrium, and there occurs an energy flow through

the system from one heat reservoir with a high temperature to another heat reservoir

with a lower temperature. The heat reservoirs exert a generalized thermodynamic

I force, X1, on the system, called an affnity, giving rise to a corresponding flux,

A. For example, when only energy flow is allowed, the temperature difference

between two heat reservoirs is the thermodynamic force, and the energy flow is

the corresponding flux. In some cases, we can consider a system where matter

I flow as well as energy flow is allowed, and the affinity and the flux are defined

I 18
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accordingly. The flux flow through the system causes a change in the entropy of the I
system. Equivalently, it can be said that in time t, the entropy is produced inside

the system through a dissipating process. I
P = - = d JkXk (2.1.22)

In contrast to a closed system in thermal contact with only one heat reservoir, a

system in thermal contact with more than one heat reservoir is always in nonequi-I

librium, and the macroscopic state of the system is strongly affected by the energy

and/or matter flow. The total entropy change in the system comes from both the

entropy flow into the system and the increase of the entropy inside the system

through a dissipative irreversible process; that is,

dSnonequil. closed system, many reser. = deS + d1 S (2.1.23) I
where deS is the entropy flow into the system, and d1 S is the entropy produced

inside the system. The total entropy change in time can be written as

OS5 43 @S Oi Sos ats As

=-I a d- @ T, + J dV E JkXk (2.1.24)

where f. is the entropy current into the system from the heat reservoirs, Xk is the

affinity, and Jk is the flux corresponding to the given affinity. The entropy change

through an irreversible process from inside, diS, is greater than zero because the

system itself is in nonequilibrium. A system is said to be at a steady state if the

thermodynamic state variables do not evolve in time. This means that in steady

state, the total entropy change dS is zero, or from Eq.(2.1.23)

deS = -diS < 0 (2.1.25) I

We find that in order to maintain a npneqilibrium steady state, it is necessary to

have a continuous, negative entropy flow into the system that is equal to the value

of the internal entropy production inside the system.

19
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I Now we discuss the thermodynamic stability of a nonequilibrium steady state.

A system with an affinity much smaller than the thermal energy is called a linear

system. When only energy flow is allowed between the system and a heat reservoir,

* this corresponds to the case that the temperature gradient is much smaller than the

average temperature. In such systems, the flux can be approximated to be linearly

proportional to the affinity. For example, the heat conduction in a linear system is

given by

J. = -,vVT = ,T2V() (2.1.26)

3 For a linear system, from Onsager's reciprocity theorem and the linearity, it can

be shown that the entropy production from inside the system is minimum when

in a steady state. This is called the 'minimum entropy production' theorem. It

implys that the system prepared not in steady state evolves toward the steady state

by producing entropy at a rate always larger than the entropy production rate

for the final steady state. In another words, the production rate is largest in the

3 beginning, and gets smaller as the system approaches the steady state. As shown in

Figure(2.11), when the entropy production from inside the system is plotted in time,

I it approaches to the minimum entropy production rate corresponding to the steady

state value. If we recall the role of a thermodynamic potential the minimization

of which determining a macroscopic state of a thermodynamic system, the entropy

3 production rate, P = OiS/Ot, can be viewed as an appropriate thermodynamic

potential in determining the stability of a linear system. Say the system has a

3disordered configuration {qo} in a steady state, and then perturbed by a small

linear fluctuation to a new configuration {q}. The entropy production, P({q}),

I corresponding to {q} is always larger than P({qo }), and the system reestablishes the

steady state by minimizing the entropy production P (Refer to Figure(2.12)). That

I is, the steady state with the maximun entropy (dS = 0) and with the minimum

entropy production from inside (P = OiS/oI = minimum) is stable against any

I linear thermodyanmic perturbation that pulls the system from steady state, because
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the entropy production is always large enough to return the system back to the

steady state. This means that a disordered state cannot evolve to an ordered state

as long as the system deviates from equilibrium only through fluctuations or random

perturbations. Morover, in a system obeying linear laws, a spontanoeus emergence

of order in the form of spatial or temporal patterns differing qualitatively from 3
equilibrium behavior cannot take place.

However, in a nonlinear system, where the affinity is on the order of or larger

than the thermal energy, the minimum entropy production theorem does not hold 3
in general. Therefore, a systematic change of one of the thermodynamic parameters

or the increase of the affinity ( for example, the increase of a temperature gradient) 3
might force the system to find another steady state with a new configuration. This

means that the steady state which is stable in a linear regime becomes unstable in 3
a nonlinear regime, and evolves in time toward a new stable state which possesses

different thermodynamic values. This new stable state becomes a steady state, and 3
exhibits completely new macroscopic behavior. In many of cases, the nonlinearity

works to provide a positive feedback to the system, allowing a macroscopically or- I
dered state as a steady state. Therefore, it is possible to have a nonequilibrium

phase transition from a disordered to an ordered state. The fundamental differ-

ence from an equilibrium phase transition is that the nonequilibrium system should 3
be kept far from thermal equilibrium by energy flow through the system in order

to maintain the macroscopic ordering achieved by a phase transition. The actual 3
evolution pattern to a new stable state is different from one physical system to

another physical system, depending on the interaction Hamiltonian. The stability 3
has been studied in nonlinear dynamics, and even an apparently simple nonlinear

system shows a whole variety of instabilities. The nonequilibrium phase transi- m

tion behavior can be understood by reducing the problem to a nonlinear dynamics

problem. I
Hydrodynamics, chemical reactions, and laser threshold are only a few ex- 3
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amples of physical systems where a symmetry breaking phase transition takes place

U when the system is maintained far from equilibrium. Thus, a fluid layer in gravity

heated from below develops a regular convection pattern called the Benard insta-

bility. This formation of a pattern in the fluid is in fact a symmetry breaking phase

transition from a homogeneous, isotropic state to a well-formed, anisotropic state.

SThe fluid is an open system where there is an energy flow from the bottom hot

plate to the top air. The convection pattern persists as long as the temperature

difference is maintained, allowing an energy flow across the boundaries of the fluid.

Another example can be found in a chemically reacting system which is closed

to mass flow but open to energy flow across its boundary. The chemical reaction

between N 2 04 and NO 2 under illumination is known to show multiple stationary

states of NO2 concentration. When an equilibrium mixture of NO2 and N 2 0 4

is irradiated with visible light, the light is absorbed only by NO 2 and most of the

absorbed light ultimately convert into heat. The increase in temperature accelerates

the production of NO2 , resulting in an increased light absorption, and, hence an

increased temperature, which in turn produces even more NO2 . As long as the

incident light intensity is strong enough, the mixture of NO2 and N2 04 undergoes

a phase transition to the pure NO 2.

As these examples illustrate, we can expect a symmetry broken ordered state

in system far from equilibrium. The emergence of order and coherence extending

over scales much larger than the characteristic scales of the individual molecules in

a system far from equilibrium reminds us of the order-disorder phase transition in

thermal equilibrium. Similar to the equilibrium phase transition, the cooperative

effects between molecules (the detailed form of the cooperativity depending on the

intercation Hamiltonian of the system) inside an open system is the single most

important fact in giving a macroscopic, long range order. Even if these two phase

transitions share a formal similarity, there is a fundamental difference in the origin

for the phase transition. The origin of the thermal equilibrium phase transition
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can be traced back to the competition between the interaction energy and the I
entropy, these two comprising the free energy of a closed system. In contrast, a

structural phase transition in an open system far from equilibrium originates from

nonlinear interactions inherent in the Hamiltonian of the system, and the ordered 3
phase can be maintained only in the presence of energy and/or matter flow through

the sytem. The stability and the origin of bifurcation in nonequilibrium system 3
have been studied in nonlinear dynamics, and it has been found that a nonlinear

interaction term in the Hamiltonian is responsible for the onset of instability. The

nonlinear source can be easily identified once a suitable microscopic description of

the system is obtained. In hydrodynamics, a term of the from 6 0 Vit in the fluid 5
velocity F appearing in the Navier-Stokes equation is the nonlinear source, while

in the NO 2 - N 204 chemical reaction, a temperature dependent nonlinear reaction I
rate constant k gives rise to the instability

The last example is the case of laser threshold which is directly relevant to

the overall discussion. In laser threshold, a stimulated scattering process occurs 3
between two mirrors of F-P cavity, [s]-591 and laser threshold is an important

example of second order phase transition of a stationary nonequilibrium system. 3
As illustrated in Figure(2.13), the electric field amplitude E is taken as the order

parameter that describes the macroscopic state of the system, and X is the optical I
pumping intensity which determines the inversion population. For very weak op-

tical pumping, the system may be considered as being in a nonequilibrium state

with a finite relaxation time fluctuating from thermal equilibrium, and the order

parameter is zero. With increased pumping, the nonlinear interaction of light with

matter leads to the onset of instability. Critical slowing down takes place, and the 3
system cannot be appoximated to be near thermal equilibrium any more. Instead,

the system is understood to be near a-stationary nonequilibrium state as indicated 3
by the infinite relaxation time. For A > Ac where A, is a threshold pumping inten-

sity, a new branch of states is found to be stable with a non-zero order parameter I
23 3
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and a finite relaxation time. The two different branches of state have different sym-

metries, which is the phase of the electric field amplitude in this case. For the zero

amplitude branch, the phase of each microscopic dipole is random, and there ex-

I ists a complete phase angle rotation invariance. This phase symmetry is broken on

the finite amplitude branch, and the broken symmetry implies the existence of long

I range order in space and time. In other words, the microscopic dipoles with random

phase were undergoing spontaneous emission process in the zero amplitude branch,

and above threshold pumping, the microscopic dipole moments are strongly corre-

lated through stimulated emission leading to an ordered coherent emission. The

random phase of individual dipoles is then slaved by the non-zero order parameter,

or the resultant laser light, to possess an arbitrary but fixed phase.

For this quantum optical phase transition to take place, there is a critical

number density of the molecules similar to the critical temperature in the thermo-

dynamic phase transitons. In laser threshold, for example, the electric field can be

3 taken as an order parameter and the population inversion as the temperature, and

above the critical population inversion the system composed of the photons and the

I molecules undergoes a second-order phase transtion breaking the spatial symmetry,

i.e., from the disordered phase to the ordered phase. The nonequilibrium phase

transition, however, is not in thermal equilibrium, and energy is constantly flowing

3 through the system. The system is an open system with respect to the number of

photons present. But there does exist a concept corresponding to thermal equilib-

I rium. For example, in laser threshold, there exists a photon flux equilibrium. In

fact, in all quantum optical processes, flux equilibrium is achieved rather than ther-

I mal equilibrium, and a generalized free energy can be defined. The minimization of

the generalized free energy for a given number density of the optical sites determines

I the macroscopic state of the system. Qptical bistability can be understood in the

exactly same way. The state equation describing the nonlinear Fabry-Perot inter-

I ferometer has a close formal analogy with to the state equation for a ferromagnet
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in an external magnetic field. O.B. is a quantum optical analogue of the first-order I
phase transition, having a well-defined generalized Landau-Ginzburg potential. The

incident laser intensity corresponds to the external magnetic field, the output light

intensity to the order parameter (magnetization), and the cooperative parameter

to the temperature.[60l (Table 2.1)

A complete description of a nonequilibrium phase transition rea'ires the in-

troduction of the Langevin equation for the order parameter and the corresponding

Fokker-Plank equation describing the time evolution of the probability distribution 3
function of the order parameter. A Markovian process is commonly assumed. The

stationary solution of the Fokker-Planck equation[6 2[ s3] is directly obtainable, and

the generalized Landau-Ginzhurg potential can be defined.

Here we briefly review for illustration the Langevin equation and obtain the

corresponding Fokker-Planck equation by using the simple physical example of a

Brownian particle. When a large particle is immersed in a viscous fluid, the particle I
is subject to a continuous, random bombardment from the incessant thermal mo-

tion of the fluid molecules. The thermodynamic system is defined as the Brownian

particle plus the viscous liquid. The system is isolated from its surrounding. The

Brownian particle is in simple thermal contact with a single large heat reservoir

which is the viscous liquid. In thermal equilibrium, a probability distribution of

velocity of the Brownian particle is a canonical distribution. But here we are inter-

ested in the nonequilibrium state of the Brownian particle where the dissipation of 3
kinetic energy of the Brwonian particle and the collision of the Brownian particle

with the viscous liquid should be considered explicitly. The nonequilibrium micro-

scopic processes are best described by stochastic theory. For example, the equation

of motion of the Brownian particle is given by Langevin equation,I

dv

7 = -- v + F(t) (2.1.27)

where v corresponds to the velocity of the particle, --yv is the frictional force linearly

proportional to v with -y the dissipation rate, and F(t), called a Langevin force,
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describes the random, fluctuating forces acting on the Brownian particle. In order

Ito properly take into account the random fluctuations of the Langevin force F(t),

a themodynamic ensemble of the system is introduced. In the thermodynamic

ensemble, the Langevin force varies from system to system, and only the ensemble

averages of the force are ',nown. The macroscopic behavior of the Brownian particle

I can be described only in terms of these ensemble average values of the stochastic

Langevin forces which are assumed to be time-correlated in a specific way depending

Ion the actual form of the stochastic prcesses. The ensemble average of F(t) should

vanish

I (F(t)) =-0 (2.1.28)

Ibecause the average velocity (v) of the Brownian particle decays exponentially. In

most cases, the collision of the particle with the fluid molecules takes place in

ja very short time compared to the relaxation of the velocity acquired from the

collision. Two successive Langevin forces acting separately in a time longer than

1the collision time are independent, and under this condition, the ensemble average

of the Langevin forces is zero. When the collision is assumed to be instantaneous,

I or, equivalently, the correlation time of the Langevin forces are zero, the Langevin

force is said to be delta-function correlated; that is,

(F(t)F(t')) -- Q6(t - t') (2.1.39)

Q is the magnitude of the auto-correlation of the Langevin force, and is a measure

of the noise strength. A delta-function correlated Langevin force is called white

noise because the spectral distribution obtained from Fourier transformation Uf a

delta-function is constant, independent of frequency. When the spectral distribution

has a frequency dependence, it is called colored-noise, one typical example being a

Gaussian-correlation. 0

( F(t)F(t')) = - exp{-It - t'i/r} (2.1.30)
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For colored-noise, the general solution of the Langevin equation is obtainable by nu- I
merical methods. Keeping our discussion simple, we will consider the case of white-

noise and recall the physical implications of the time-correlation of the Langevin I
forces.The Langevin equation Eq.(2.1.37) for a Brownian particle is linear be- I
cause the frictional force on the particle is linear in v and the magnitude of delta- 1
correlation is independent of v. In the case of a linear Langevin equation, the

analytical solution of v(t) is

v(t) = vo exp(--yt) + F(t')exp{-y(t - t')}dt'. (2.1.31)

Most of the physical properties of the Brownian particle can be obtained from

Eq.(2.1.29) and Eq.(2.1.31). For example, the mean kinetic energy of the Brownian I
particle can be immediately derived

E = (v(t)) = - f Lt(F(t)F(t2 ))exp(-2"yt)exp(ttt 2 )dtldtz

mQ 2
= -Q(1 - exp(-27t)) (2.1.32)

After a time much longer than the inverse of the dissipation rate (t >> 1/7), the I
Brownian particle will be in a thermal equilibrium with the fluid molecules, and the

kinetic energy of the Brownian particle is 3kT/2 from the equipartition theorem,

E=(2_ =Q 3 kT (2.1.33) 1
2 4-t 2

or U
Q - 67kT (2.1.34)

This shows that the magnitude of the noise is related to the friction, which is the

simplest example of the fluctuation-dissipation theorem. Furthermore the time- 3
correlation of the Langevin force has been identified with other mac-oscopic quan-

tities, the dissipation rate, -f, and the temperatue of the heat reservoir, T. In 3
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principle, the noise strength Q can be derived rigorously from the equation of mo-

tion for all microscopic variables. Here, however, we have resorted to the physical

argument through the equipartition theorem to find the physical implications for

Now we consider the diffusion of the Brownian particle. The diffusion is de-

fined as the mean displacement of the Brownian particle as a result of the stochastic

collisions with the fluid molecules, and can be viewed as a macroscopic physical

manifestation of the microscopic stochastic processes. Once the velocity correlation

is known, the diffusion of the Brownian particle in time is directly obtained by

jintegration.
((z(t) - zo)2) = ([ v(tl)dtl]2 ) = f(v(tj)v(2 ))dtdt,

:;-t 2Dt (2.1.35)

where the velocity correlation is approximated as

(v(tl )v(t 2)) Z - (F(t 1 )F(t 2 ))= (tl -t2) (2.1.36)

which corresponds to neglecting the transient velocity change because we are inter-

ested in the diffusion in thermal equilibrium. From Eq.(2.1.34) and Eq.(2.1.35) we

get the well-known Einstein relation.

D = UT (2.1.37)

The important conclusion is that the diffusion of a Brwonian particle inside a viscous

fluid is related to the correlation of the Langevin forces, or in other words, the

prc .ess of diffusion is nothing but a random walk at a molecular level.

In general, the Langevin equation is nonlinear, and the analytical form of

the ensemble average of the velocity is not easily available. The general Langevin

equation with white-noise is expressed by the relation

d- = K() + F(t) (2.1.38)

d2
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(F(t)) = 0, (F(t)F(t')) = Q(z)6(t - t') (2.1.39) 1
where now z is a general variable. The ensemble average of the variable z is diffi-

cult to obtain for a general nonlinear Langevin equation just because the analytic

solution is not known except for a trivial case. Rather than trying to obtain the 3
rigorous solution of the Langevin equation, we find a differntial equation for the

probability density, or the probability distribution function, f(z, t), of finding the

variable z in the interval (z,z + dz) at time t. In principle, once the probability

distribution function is known, the ensemble average can be obtained immediately I
just by integration. Then the question comes down to whether the Langevin equa-

tion can be reduced to an equation for the probability density in a simple way. U
Fortunately, for the case of white noise, it is known that the Langevin equation

can be reformulated to a differential equation for the probability density, called the I
Fokker-Planck equation first derived to describe Brownian motion. Furthermore, as

will be seen later, the reformulation of the Langevin equation by the Fokker-Planck

equation is important in providing a thermodynamic potential concept that is very

useful in studying a nonequilibrium phase transiton. The thermodynamic potential

concept, which is even applicable to a system far from equilibrium, allows us to

make an analogy between the nonequilibrium phase transition and the equilibrium

phase transition. I
In the case of delta-correlated white noise, which is a Markovian process,

the derivation of the Fokker-Planck equation is rather simple. The Fokker-Planck

equation corresponding to the general Langevin equation Eq.(2.1.38) is

Of (Z't) 618 1 02
= -- K()f(z,t) + - Q(z)f(X, ) (2.1.40)

which is an equation of motion for the probability distribution function f(z, t). Here 3
K is refered to as the 'drift' term, and Q the 'diffusion' term. The Fokker-Planck

equation can be expressed as a continuity equation for the probability.

=-(Kf = 0j(,t) (2.1.41)
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Iwhere j(z, t) is the probability current. Thus, the change of the probability density

f(z, t) in time is equal to the negative of the divergence of the probability current

j(z,t). When the drift term is absent (K=O), Eq.(2.1.40) is a diffusion equation,

Iand for constant Q, the time dependent solution is

f(z,t) = 1 exp{ ( X _) 2 1 (2.1.42)I2x~ 2Qt
Without a 'drift' term K, the probability density f(z,t) gets broadened in time,

Iwhich eventually becomes flat. In a real physical system, the drift term is manifested

as a restoring force which keeps the probability density from spreading out tempo-

Irally while the diffusion term appears as a stochastic force which makes the prob-

ability density broaden in time. One standard way to reduce the time-dependent

Fokker-Planck equation to a time-independent equation is to change the equation

into an eigenvalue equation. The time dependent part can be separated by assuming

the following product function

Sf[(z,t) = eAtF(x) (2.1.43)

IThe spatial part Fokker-Planck equation becomes

a182
AT(z) = -PK(z(z) + 2-2 C,(z)IF(z) (2.1.44)

IOnce the eigenvalues of Eq.(2.1.44) are obtained, the probability density f(z,t) is

expressed as a linear combination of the linearly independent solutions.

f(t) = E (2.1.45)I M=O

The stationary solution corresponds to A0 = 0. There are various ways to solve

the time dependent Fokker-Planck equation, but the nonlinear differential equa-

tion itself causes a lot of difficulty in obtaining an analytic solution. Even the one

dimensional problem cannot be solved without using a numerical method. In the
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steady state (t --+ oo), the two competing terms balance out, and there is no tempo- I
ral change in the probability density f(z, t) exhibiting a stationary behavior. The

stationary (steady state) solution is quite simple. Neglecting the time derivative in I
Eq.(2.1.41), the stationary probability f(z) is simply

Nf g(- ) N

F(z) introduced in Eq.(2.1.46) is the generalized Landau-Ginzburg potential for

a stationary state, which is an important concept for understanding the physical I
behavior of the system. Let's look at the Brownian particle one more time to

understand the physical implication of the Landau-Ginzburg potential. For the I
Brownian particle, the stationary solution is [[

F(v) = -2 f-K dv = 2-f 7vdv = 2," - = (2.1.47)

and the probability density is given as

mV2

f(v) = Nexp(-F(v)) = 2r-Texp( - ) (2.1.48)

The ensemble average of the kinetic energy is then simply given by [

We find that the probability density follows the Maxwell distribution, the standard i
deviation determined by the temperature, or the magnitude of stochastic force.

Now let's look at the potential, Eq.(2.1.47). The potential is of a parabolic form,

and the stationary state can be visualized by considering a point particle in the

parabolic potential well. The thermal fluctuations (more precisely the stochastic

Langevin force) from the fluid molecules keep pushing up the point particle along I
the potential well (note a large Q means a flatter parabola), and the frictional force

(or the drift term) attract the point particle down to the minimum position of 3
31 3
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the potential well (note a large frictional force correspond to a sharper parabola.).

We note that a small Q corresponds to a deep potential well, or a sharp peak

in the probability density f(z), implying the stationary state is well-defined. A

Brownian particle has been chosen to elucidate the idea behind the Fokker-Planck

equation. The Brownian particle was in the thermal equilibrium with the viscous

fluid, and the diffusion was found to be linearly proportional to the temperature

of the heat reservoir. However, the application of the Fokker-Planck equation is

not restricted to systems near thermal equilibrium. For an open system far from

thermal equilibrium, once the Langevin equation describing the time dependence

of the order parameter is identified from an equation of motion for the relevant

nonequilibrium physical system, we can build the Fokker-Planck equation with an

appropriate delta-correlated stochastic force. This then allows a definition of the

generalized Landau-Ginzburg potential in the stationary state. By examining the

Landau-Ginzburg potential, the phase transition behavior of the nonequilibrium

state can be studied.

2.2 Bloch Saturable Absorber System inside a Fabry-Perot Cavity

With this background, let's consider a system composed of resonant atoms

in an F-P cavity. The F-P cavity contains N two-level Bloch type atoms with the

transition frequency w.. The mirror spacing of the F-P cavity can be varied. For

a given mirror spacing, the cavity mode wc is determined simply by the standing

wave condition. We now send in a coherent laser light of optical frequency w, that

is in complete resonance with the atomic transition frequency W.. The cavity mode

W, is tuned to the incident laser frequency w, which corresponds to the setting of

the F-P cavity at the maximum transmission peak. Thus,

W = =

This corresponds to the condition for purely absorptive O.B.. The interaction of a

Bloch system with an electromagnetic field is described by a Bloch equation as will
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be discussed in Chapter 3. When the incident light frequency is resonant with the I
atomic frequency, the Bloch equation Eq.(3.5.26-28) reduces to

i? E- - l,.w (2.2.1)'I I
6V - 711(W - weq) (2.2.2)

Now we need an equation of motion for the electromagnetic field, which is, of course, I
the Maxwell equation. The wave equation is

L 2  1 a 2 )2(Z't) 41r 2 P(z,t) (2.2.3),9z2 C2 & 2  C2(z5t) - tI

Since the rotational wave approximation (RWA) was used in deriving the Bloch

equation (Refer to Chapter 3, Sec.3.5), a rapidly changing part of the electric field I
and the polarization field does not affect the atoms appreciably, and the reaction

of the atoms back on the electric field is slow. The slowly varying envelope approx-

imation (SVEA) for the fields is, thus, satisfied. Setting I

E(z,t) = E(z,t)expi(kz-uwt), P(z,t)= P(z,t)expi(kz-wt) (2.2.5) 1
we find a linear wave equation in SVEA neglecting the second order derivatives as

follows.
-O -E = i2,,p (2.2.6)

HT + 9-Z

The polarization of the Bloch system is given as (see Eq.(3.7.1)) I

=N iv= iNv (2.2.7)

for perfect tuning of the laser frequency with the atomic transition frequency (w =

w'). The macroscopic parameters are redefined as,

S Nv A= 1(NI - N2) Nw (2.2.8)
2 2I
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where S is related to the macroscopic dipole moment, and A is half of the population

difference between the ground state (N1 ) and the excited state (N 2 ). The Maxwell-

Bloch equations Eq.(2.2.1) (2.2.2) (2.2.6) reduce to a set of coupled Langevin equa-

tions Eq.(2.2.9)-(2.2.11) when the spatial average is taken for the electromagnetic

field. (See Appendix Al for a derivation of Maxwell-Bloch equation in the second

quantization formalism)

S= -9S - rc(E - Ei/v'-) + FE(t) (2.2.9)

S = -EA - 7 ±S + Fg(t) (2.2.10)

- 1(A - N )+ Fa(t) (2.2.11)

where
= c(l - R) 4irw (2.2.12)

L ' g 'V-1

ic is the cavity damping constant, or the life time of photons inside the F-P cavity,

and g is the dipole coupling constant between the atoms and the electric fields in

the cavity modes. FE, Fs, and FA are the fluctuations responsible for the diffu-

sion constant.[ s I["9] The Maxwell-Bloch equations can be reduced to the Langevin

equation for the optical field E in the good cavity limit (r << ±,-I,) where the adi-

abatic following of the atoms to the electric field can be assumed, in which case the

time derivatives in Eq.(2.2.10) (2.2.11) can be ignored because the temporal change

of the microscopic dipole moments is slaved by the macroscopic Maxwell optical

field (order parameter). More explicitly, substituting Eq.(2.2.11) into Eq.(2.2.10)

in the adiabatic following assumption gives

S /I -EA

-±-E( N  1A ES) (2.2.13)

or

12S _L (22.14)

1 + ( E)2
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Substituting Eq.(2.2.14) into Eq.(2.2.9) yields the Langevin equation for the electric I
field.

1E = Ej Iv'T-- E - .2 - + FE(t) (2.2.15)

C1 +(1 2

Introducing the Rabi frequencies (see Chapter 3 Sec 3.5)

nt = !E = 1s E, ' i = 1 A (2.2.16)

and defining the scaled amplitudes x and y for the transmitted and the incident I
fields, and the scaled time -r,

x = y vtTh r e t (2.2.17)

Eq.(2.2.15) reduces to a simple form I
dx 2Cx

y - 1 +z 2 +F(t) (2.2.18)

where

C = 7R 1 41rwp 2 N L aoL (2.2.29)
2i 2 c V 1- R 2(1- R)

gN 2rw 2 N (2.2.20) I

C is called the cooperative parameter, and is the ratio of the superfluorescent decay 3
rate(7R) to the spontaneous decay rate, or a measure of the cooperative effect of

atoms relative to a non-cooperative individual atomic effect. As will be seen below, I
the cooperative parameter C plays a role analogous to the critical temperature in

the thermodynamic equilibrium phase transition. Note that the stochastic Langevin

forces is rescaled. 1 -_ r(t) (2.2.21) 1
F(t) =jEt (..1

In the stationary state, Eq.(2.2.18) reduces to the state equation for the system. 3
= X + 2C (2.2.22)
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i The state equation can be solved in an analytical form, and there exists one real

root for the output field amplitude x which is the order parameter for the system,

for a given input field amplitude y for C < 4. But for C > 4, there are three real

I r3ots of z for a given y exhibiting a bistable behavior. A comparison of the state

equation for O.B. to that for 2-D Ising spin system (Eq.(2.1.20)) shows a one-to-one

3 correspondence of the thermodynamic variables clearly. The input electromagnetic

field amplitude y corresponds to the external magnetic field H, the output electro-

Smagnetic field amplitude x to the total magnetization (0), and the cooperativity C

to the temperature T.

3 In order to understand (i) the phase transition behavior, (ii) the temporal

change of the order parameter z upon the change of the external field y, and (iii)

I the effects of fluctuations, we need to find the Fokker-Planck equation. The mag-

nitude of the stochastic Langevin force can be found from the Heisenberg equation

of motion of the microscopic variable. There are many sources for the fluctuations,

I for example, the fluctuation in the external field amplitude itself, or the fluctuation

in the polarization of the electric fields. But the most dominant contribution to the

noise is from the decay of the photons either ia the coherence through the sponta-

neous radiation and the homogeneous broadening or in the numbers through a cavity

3leaking (i.e. a finite life time of photons inside F-P cavity). The quantum statistical

analysis of O.B. identifies the corresponding thermodynamic parameters(Tc,,,...)

3 in terms of the optical parameters of the atoms and cavity.(64-[691 The Fokker-Plank

equation corresponding to Eq.(2.2.18) is

Of - K(z) + 1 Q(8)2 (2.2.23)

with

3K(z) = y- x- 2Cx 22-4
1+2 (2.2.24)

I = + )2 (2.2.25)Q~z)= q1 + X2
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C 2rhw A 4 N I
q = 2(- -c-rn (2.2.26)

N= "t±7.l7 V (2.2.27) I
8rhw1.

2

where N, is the saturation photon density appearing in the quantum mechanical 3
description of superfluorescence.[7 ][71] The stationary solution of the Fokker-Planck

equation (2.2.23) is straightforward leading to

f(z) = N exp(2 .d(z) I
2

; Nexp(- f K(z)dx)

=Nexp(- 2V(z)) (2.2.28)

qI
where q is assumed to be small, and the generalized Landau-Ginzburg potential
F(z) isI

F(z) 21(x) 2 {1(z _y)2 + Cln(1 + z2)} (2.2.29)

with I
V(z) =- K(z)dz = _(z y) 2 + Cln(1 + z2) (2.2.30)

In Figure(2.14-17), we plotted the above potential F(z) as a function of the order

parameter z, which is the output field amplitude, for various values of cooperative

parameter C in a fixed input field amplitude y. It is evident that the first order

phase transition occurs at C = 4, and there exist a hysteresis relation between the I
output and the input field amplitudes only for

C = > 4. (2.2.31)2(1 - R)

Let's look at the plot for C = 20 (Figure 2.17). At a low input amplitude, the output

amplitude (order parameter z) is neas zero, say zx, and as the input intensity is

increased, a new local minimum of the potential F(z) starts to appear at another

positive value of order parameter, say Z2, greater than the original value xj. For
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a large enough input amplitude, the potential F(z) at this new value of order

parameter, X2, becomes the global minimum, but the system still assumes the order

parameter z, corresponding to the local minimum, because the potential barrier is

Ihigh enough to prevent the system leaking through to the global minimum 22. Once

the input amplitude exceeds threshold value corresponding to the disappearance of

the local minimum with the order parameter value zj, the nonlinear Fabry-Perot

switches over to a high transmission state having a new order parameter 2, and

stays there. When the above process is reversed, that is, as the input amplitude

is decreased, the potential F(z) shows a similar behavior upon the change of the

input intensity. But this time the role of x1 and 22 is reversed because the system is

already in a state with the order parameter value z2, that is, in a highly transmittant

state. As the input amplitude is kept being decreased, the potential F(z) at the

order parameter value z, starts to become a local minimum and evolves to the

global minimum, but the system is still in a highly transmittant state untill the

local minimum at z2 disappears. Therefore the nonlinear Fabry-Perot can assume

two different macroscopic states (low transmittant x1 and high transmittant 22)

depending on the history of the preparation of the given input amplitude.

When the output field amplitude is plotted as a function of the input field

amplitude from the state equation Eq.(2.2.22), it is easy to see that for C less than

or equal to 4, the output field amplitude is a nonlinear function of the input field

amplitude as can be seen from the stationary state equation Eq.(2.2.22), but still

they are mapped by one-to-one without any bistability.
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I Figure Captions: Chapter 2

I Figure 2.1; Nonlinear Fabry-Perot for Optical Bistability

Figure 2.2; Multiple Quantum Structures

Figure 2.3; Hybrid Optical Bistability

Figure 2.4; Optical Bistability in a Nonlinear Optical Thin Film

Figure 2.5; Phase Diagram for Liquid-Gas

Figure 2.6; Landau-Ginzburg Potential F(0, T) for a Second Order Phase Transition

Figure 2.7; Landau-Ginzburg Potential F(0, T) for a First Order Phase Transition

Figure 2.8; Hysteresis Behavior of Order Parameter as a Function of Negative Tem-

perature

Figure 2.9; Landau-Ginzburg Potential F(0, T) in the Presence of an External Field

Figure 2.10; Hysteresis Behavior of Order Parameter as a Function of the External

Field

Figure 2.11; Entropy Production Rate at a Steady State

Figure 2.12; Entropy Production Rate as a Thermodynamic Potential

Figure 2.13; Critical Slowing Down near Phase Transition

Figure 2.14; Landau-Ginzburg Potential for Optical Bistability (C=3) with Various

Input Amplitudes (3, 6, 9, 12, ... , 30)

Figure 2.15; Landau-Ginzburg Potential for Optical Bistability (C=5) with Various

Input Amplitudes (3, 6, 9, 12, ... , 30)

Figure 2.16; Landau-Ginzburg Potential for Optical Bistability (C=10) with Various

Input Amplitudes (3, 6, 9, 12, ... , 30)

Figure 2.17; Landau-Ginzburg Potential for Optical Bistability (C=20) with Various

I Input Amplitudes (3, 6, 9, 12, ... , 30)
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Hybrid Optical Bistablity
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Optical Bistability In a Nonlinear Optical Thin Film
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I Phase Diagram for Liquid-Gas
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Landau-Glnzborg Potential F(O,T)
for a second order phase transitionI
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Hysteresis Behavior of Order Parameter asI

a Function of Negative Temperature
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Landau-Glnzberg Potential F(4,,T)
In the presence of an external field
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Hysteresis Behavior of Order Parameter as

a Function of the External Field
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Entropy Production Rats at a Steady State
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Landau-Ginzburg Potential for Optical Bistability ( C=3) I
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1 Landau-Glnzburg Potential for Optical Bistablity ( C=5)
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Landau-Glnzburg Potential for Optical Bistablilty ( C=1O)
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Landau-Glnzburg Potential for Optical Bistablity ( C=20)
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CHAPTER 3

NONLINEAR OPTICAL PROCESSES: RESONANT AND NONRESONANT 3
Conjugated 7r-electron organic and polymer structures are now well known I

r1 -~ to exhibit exceptionally large nonresonant second order Xik-3;,IW),
(3) i

and third order Xijk1-W 4 ;l,aW2,iW3) nonlinear optical susceptibilities, and their

microscopic origin and mechanisms can be successfully described by quantum field

theory of many electron systems in one and two dimension . In this description, I
as the spatial dimensionality of the many-electron system is effectively lowered, the

motion among the many electrons becomes highly correlated.['] Electron correla- I
tion plays a major role in determining X(2 ) (-W3' w, w2) and XL(-w4 ;wiw 2 ,w 3)

in conjugated ir-electron systems, and its effect cannot be neglected in properly

accounting for the nonlinear optical properties of conjugated structures. [16,

In Sec.3.1 a direct summation method in calculating < (W4;W1iW2,U;3)

from the transition moments of electronic transitions and the energy states in a 3
molecule will be presented. A linear conjugated hydrocarbon chain structure is

chosen as a simple system to study the importance of the electron- correlations in 3
the third order nonlinear optical properites, which is discussed in Sec.3.2. In Sec.3.3,

the theoretical analysis is extended to a quasi-two dimensional conjugated structure, 3
and one model system is cyclic octa-tetraene (COT). The theoretical calculation of

third harmonic generation dispersion for COT is presented, and compared with the I
linear chain case.

In Sec.3.4-7, a resonant nonlinear optical response is presented in terms of I
Bloch susceptibility. 3

3.1 Microscopic Description of Second Order Hyperpolarizability

The macroscopic nonlinear optical properties of organic molecular and poly-

mer structures in condensed states are best described starting from the individual I
63 3
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I

responses of isolated molecular, or polymer chain, units. In the lattice gas ap-

I proximation, if the nonlinear susceptibility of an isolated molecule is known, then
(2) (3)

Xijk (-w3; W1, ;02) or Xijkj(-w 4 ; W1 , 2, W3) of the macroscopic ensemble of molecules

j is determined by the orientational distribution function of the independent units.

Local field factors must also be included to account for the effect of the dielectric

I environment on the electric field strength at the molecular site. The macroscopic

frequency-dependent second and third order susceptibilities X(2)(-3; 7W1,w2) and

(x -; w1 , w2, w 3) can then be expressed in terms of the molecular susceptibili-

ties Oi j k (-w3; w1, w2) and -Yijkl(-w4; w1, 72, W3) as

(2 C
CC

( xk(-W 43; U;,,, )L0 (3.=.1 R)OER3'PnfnnD

I 
and

-- ~~(3) -;4i
Xijkl(,U;;Wl;2, U;) =N., R! , R'nR'RPf

< 7v 'j,(-W4; U;W, 03)fjt, I fJo, (3.1.2)

where N, is the number of unit cells per unit volume, the summation is over all

molecules in the unit cell, R is a rotation matrix describing the orientation of each

molecule in the unit cell, and f is the frequency dependent local field factor. The de-

I scription of the macroscopic nonlinear optical response is thus reduced to an under-

standing of the microscopic second and third order susceptibilities 3ijk (-L"3 ; W1 , UW2)

and fijk1(-;4;wlW2,UW3) and knowledge of the orientational distribution of the

molecular units in the condensed phase. As special cases, isotropic gases and liq-

uids reduce Eqs. (3.1.1) and (3.1.2) to simpler forms. For example, for an isotropic

ensemble

x f (4 4 ; wl,1 2 , w)=N f f1 f W 3 -Tg(-w,;wIw 2 ,w3 ) (3.1.3)

where N is the number density of molecules and -yg is the isotropically averaged

susceptibility defined by

7I - 1E y ++ + + +ijsi)] (3.1.4)
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where the indices i and j represent the Cartesian coordinates z, y, and z. The above 1

formalism is strictly appropriate only for gases such that the mean intermolecular 3
distance is large enough for the interaction between molecules to be negligible. The

fact that the intramolecular interaction energy is much stronger than the inter- 3
molecular interaction energy in organic molecular crystals, liquids, solutions, and

polymer thin films means that the starting point for understanding the macroscopic 3
nonlinear optical properties of these various condensed phases lies in an accurate

description of the microscopic response from an isolated molecular unit. 1

The general theoretical expression for the components of the microscopic

third order susceptibility tensor -Yijk1(-W 4 ; w1 , W2,W3) is derived from time depen- -
dent, quantum electrodynamic perturbation theory. In order to avoid secular diver-

gences that would occur when any subset of the input frequencies sums to zero, the

Bogoliubov- Mitropolsky method of averages [s][91 is employed. Owing to disper- 3
sive effects, _fijkl(-w4; 01 W 2 , W3) is dependent on the input and output frequencies

iavolved for each of the various possible nonlinear optical phenomena. For the 3
particular case of third harmonic generation, for example, one obtains

7ijk(- 3 w;w,w,w) = I(5-)
r k I P -k I1 _r i 1

Pjkl(r sn3 Fj 3n2 n2n r n1g] n~z~3F 3 n2 m2n, 1 1

nj~2 n3(W,9- 3w)(Wn 2g 2w)(Wn 1 9 - W) + (Wn 3g + w-)(wn 2 g - 2w)(Wn19 - W)

f T I Pi fri Fk fl r' I
+ P-l~ jn3.~2fyl n~ + g~[T 3 l 2 'n2'n n191

(Wn, + W)(Wn2g + 2w)(w., 9 - W) (Wn3  + W)(wn.2 + 2w)(Wn,g + 3w)

PjkT ri rj r k r I Pjki[T i r k r'

W)(nt 1 9  + 9fl2 n 2 9 n1 n 1 g1

njn n 40( .2  -W(nq-U) (Wng - W)(Wn 1 g + W,)(w-n~g - W)
Piirj, r i r l k r I1

+ P 3kI 2 9 9n, n 1 1  + PjkL n2 n2goT nt ngI

(W1. 2, + 3w)(W1 2,, + W)(Wng - +W) (w1, 2 g + W)(W111 - w)(Wng + W)

(3.1.5) 1

where rt is the matrix element (nijrin2 ) with F' r= 7' - r i hw is the

excitation energy of state n, the prime on the summations indicates the ground

65 3
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state is omitted, and Pjkt denotes the sum over all permutations of those three

I indices. We will be concerned here with the case where all of the optical frequencies

are above the molecular vibrational and rotational modes but below the electronic

I excitation energies so that the nonlinear optical response is strictly electronic in

origin. In addition, for conjugated organic structures, -y is dominated by the delo-

calized it-electron contributions which in general have both larger transition dipole

moments and lower transition energies than the a- electron excitations. Thus, with

an accurate description of both the excitation energies and transition moments of

the ir- electron manifold, one can calculate the frequency dependence of each of the

different third order nonlinear optical processes using expressions such as Eq.(3.1.5).

The theoretical method employed to achieve proper description of the i'-

electron manifold of conjugated organic molecular structures for calculation of

iyk1 ( -W4; , W2, W3) consists of a multiply - excited configuration interaction cal-

culation (SCF-MO-SDCI) performed on a molecular orbital basis obtained through

I self- consistent field theory in the rigid lattice CNDO/S approximation.

For a general discussion of symmertic properties of macroscopic nonlinear
1

optical susceptibilities, refer to Appendix A2.

I 3.2 Conjugated Linear Chains

I We briefly review here the origin of the microscopic third order susceptibility

^Jjkl(-L4;w,W2,wL3) in prototype conjugated linear chains. In particular, we con-

Isider the linear polyenes which are hydrocarbon chains in which each carbon site

is covalently bonded to a hydrogen and its two nearest neighbor carbons. The re-

maining valence electron of each carbon atom contributes to a delocalized, strongly

correlated ir-electron distribution along the carbon chain. The ground state of thisIQ
system is a spin-singlet, broken-symmetry state in which the carbon lattice possesses

a single-bond/double-bond alternation.

Because the polyenes are members of the C2 h symmetry group, all of the
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ir-electron states must possess either A, or B. symmetry. Within the centrosym-

metric Cvh group, these two symmetries are of opposite parity leading to optical

dipole selection rules. The ground state is always 'A., and therefore the 1 B,, states

are one-photon allowed transitions observable in the linear absorption spectrum.

The excited 'A. states, on the other hand, are one-photon forbidden and are con-

sequently known as two-photon states. Experimental and theoretical studies of

one-photon and two-photon resonant processes in finite polyenes have shown that

below the first optically allowed, dominant 11 B,. state is located a strongly electron

correlated two-photon 21A, state.[10 - [131 The symmetries, energies, and relevant

transition dipole moments of the ten lowest calculated excited states of trans- OT I
are listed in Table (3.1). The columns # , and ,B refer to the z- components

of the transition dipole moment of each state with the ground state and with the

1'B, state, respectively. The optical selection rules are observed in the vanishing

transition moments /k,, for all the 'A, states and A',1B for all the 'B,, states. It

is also seen that the l'B,. state has by far the largest 1L,, and the 61 A, state has 3
the largest /.&,IB. As a result, these two are the primary contributors to -tz= as

will be described below.

It is instructive to consider the individual terms in the sum over states pertur-

bation expansion. Based on Eq.(3.1.5) and the symmetry selection rules described

above, it is evident that the ir-electron states in a third order process must be con-

nected in the series g -+1 Bu -1 Ag _4' Bu - g. For centrosymmetric structures,

third order processes necessarily involve virtual transitions to both one-photon and

two-photon states. For trans-OT, there are (153) terms involved in the summations

of Eq.(3.1.5). However, two of these terms are an order of magnitude larger than

all the others and constitute 70% of -y.,,,.. The remaining terms to a large extent

cancel one another resulting in a muth smaller net contribution. In both of the 3
dominant terms, the only 'Bu state involved is the dominant low-lying one-photon

1l'B,. ir-electron excited state. In addition to its low excitation energy, this state
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m is important because its 7.8 D transition dipole moment with the ground state is

more than three times larger than any other ground state transition moment. One

of the two major terms comes from the double sum of Eq.(3.1.5) with both of the

intermediate states being the IIB",. In the case of the double sum, the middle inter-

mediate state is always the ground state. This term makes a negative contribution

to 7 below resonance, since both the numerator and denominator are positive

but the double sum has an overall negative contribution. The other major term is

from the triple sum with the 61A9 state as the middle intermediate. This state,

calculated at 7.2 eV, has a large transition moment with 1'B of 13.2 D. This term

m makes a positive contribution to -y,,, and is larger than the first leading to an over-

all positive value for -ye. Importantly, the 61A, consists of 60% double-excited

configurations indicating it is highly correlated. SCI calculations obtain a negative

value for 7,,,, because they do not adequately describe this state and therefore

omit its large contribution.

I The transition density matrix p,,,, is defined through the expression

(-.e, = - p ,,,,( d " (3.2.1)

with

P.,n,(Fl) = nV I F5 ,2, ... ,'M)*,(1,,F2,.- -,f'm)dF2 ... di'm(32)

where M is the number of valence electrons included in the molecular wavefunction

3.3 Conjugated Cyclic Chains

In this section, we extend the microscopic description of 7.... for one dimen-

sion to two dimensions and consider a specific example within the class of conjugated

cyclic structures known as annulenes. As a major case, we consider the planar struc-

ture of cyclo-octatetraene (COT), the cyclic analog to OT with N=8, illustrated
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schematically in Figure(3.1)J] Although the geometrically-relaxed ground state of I
COT is known to be a non-planar, bent structure, we will examine only the planar

structure of COT in this section. The purpose is to explore the effect of dimension-

ality on the microscopic features of -fijk(-w4;W1,W2,W3). Because the inclusion of

the geometrically-relaxed distortions of the physically observed COT structure un-

necessarily complicates comparison of cyclic structure results with those described

above for linear chains, we consider only the planar structure. Analogies and con-

trasts between linear and cyclic structures are clearest when the only distinction is

the increase in dimensionality from one to two so that one need not be concerned

with decoupling dimensionality from non-planarity effects. For linear chains, since

the z-component of the transition dipole moments is much larger than the y- and

z- components, the isotropically averaged susceptibility -fg is effectively determined I
by the " component while all components involving transverse fields make neg-

ligible contributions. This reduces Eq.(3.1.4) to I
Tg -f(3.3.1)

But for cyclic structures, since the in-plane z- and y- directions are equivalent,

7 and 7yy should be of equal magnitude. Furthermore, components such as

7- will also be significant since they involve these two directions as well. The

corresponding non-negligible terms of Eq.(3.1.4) are

+ - v + ( + 7Yyz' + -7zyv- + 7yzz + yvzvz + -yyizv)] (3.3.2)

It seems, therefore, that one might be able to enhance -y, by moving from linear

to cyclic conjugated structures and opening pathways for new components of the

-yv tensor to contribute. We shall demonstrate below, however, a most striking,

opposite finding. We show that, becausc of the relevant length scales involved in

the two problems, the conjugated cyclic structure wih necessarily have a smaller

"Iq than the corresponding conjugated linear chain with an equal number of carbon

sites. I
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H Our planar model of COT is a member of the dihedral D 4h symmetry group

which is non-Abelian and, hence, has two- dimensional irreducible representations

denoted as E classes. The allowed state symmetries for ir-electron excitations are

Ag, A2g, B2g, and E,,. Of these, only states of 'E, symmetry are one-photon al-

lowed excitations from the 1Alg ground state. The 'E,, states are doubly degenerate

with the two representations related by a 7r/2 rotation about the z-axis perpendic-

ular to the molecular plane. All of the remaining symmetries listed above describe

nondegenerate, two-photon states. These two-photon states can be classified into

two types, i.e., symmetric and anti-symmetric, according to the symmetry property

I under the exchange of the electronic states in the matrix elements.[14 ] [ 161 A typical

feature of conjugated cyclic molecules, including phthalocyanines and porphyrins,

is the exsistence of a relatively low frequency absorption in the visible or near ul-

traviolet and a higher frequency absorption deeper in the ultraviolet. This feature

appears in our model COT with the weak low frequency 1E,, state at 4.4eV and

the much stronger frequency 2'E, state at 6.4eV. In the case of phthalocyanine,

however, it is always the low frequency band which is stronger.

In Table(3.2) we list the symmetries, energies, and relevant transition dipole

moments for the nine lowest calculated excited states of COT. A total of 153 states

are calculated. The third and fourth columns list the z and y-components, respec-

tively, of the transition moment between a given state and the ground state while

the column labeled IA2,2E lists the z-component of the transition moments of the

state with the two degenerate representations of the 21 E, state; the y-components

are given in the I,,2s column. Although the z- and y-directions are equivalent

in COT, it is seen in the table that these components of the transition moments

are not always equal, and this is a direct result of the double degeneracy of the

E, states. Transition moments involving any degenerate pair of 'E, states with a

two-photon state are clearly related by a 7/2 rotation or z - y, y -. -z. Thus,

the appearance of negative signs in some of the transition moments merely reflects
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the choice of basis and has no physical meaning. By choosing an appropriate basis

for the degenerate pair, the magnitudes of the x and y components can be made

equal, although this is not necessary as illustrated in Table (3.2).

The first one-photon doubly degenerate 11E, state has very small transition

moments with the ground state and a correspondingly small oscillator strength.

The 21E, doubly degenerate state, on the other hand, has a maximum transition

moment of 4.6D in this z - y basis and is a large oscillator strength in analogy to

the l'B,, stat of OT. Thus, the transition moments of the two-photon states with I
the 21E,, state determine their importance for ytijkL(-w4;Wl,w2,W3) and are also

listed in Table(3.2) for the lowest-lying states. Analysis of the various terms in the

summations of Eq(3.1.5) for COT reveals much similarity to the linear chain analog.

As in OT, there is one dominant term in the double summation which is due to the

state with the largest oscillator strength, in this case, the 21E., state. The dominant

contributions from the triple sum also all involve the 21 E,, state, but rather than just

one term, there are several significant contributions for COT. Each one is smaller •

than the dominant negative term from the 2'E, state, but together they again

lead to positive values for the nonresonant tensor components 7ijkl. The significant

contribution from several terms involving different intermediate two-photon states

is similar to what was found for the linear polyenes longer than OT.

In Figure(3.2), the transition density matrix p,,,, is shown for the ground

state with the two representations of the 2'E, state. The 7r/2 rotational relationship

of the two representations of 2'E,, is also clear here as in Table(3.2). The charge

redistribution for this transition is fairly modulated as it is for the linear chains.

In the particular basis shown for the representation of the doubly degenerate 21 E,

state, the transition moments along the z and y directions are comparable as seen in

the Figure(3.2). The calculated disperuion of the isotropic third order susceptibility

'g is given in Figure(3.3). The nonresonant value is quite small compared to the

linear chains. Very sharp resonances occur at 1.47 eV due to a 3w resonance to 11 E,, I
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and 1.60 eV due to a 2w resonance with 21AIg. Since both of these states have very

small transition moments in Table (3.2), they only make significant contributions

directly on resonance. Calculations including imaginary damping terms to account

for the finite width of the electronic excitations show that these resonances become

completely washed out and the dispersion remains flat in this part of the spectrum.

Experimental dispersion measurements, therefore, likely would not observe signifi-

cant resonant enhancement until the 3w resonance to the 21E. state which occurs

at 3.16eV.

The calculated values of -yjkL(-3;www) for COT at the nonresonant fun-
damental photon energy of 0.65 eV are -r,,,=0.7 5 and -y.y=0.21 X 10-36 esu.

Because of the D4 h symmetry, -Izzzz=Tyyy, and " , is equal to all other com-

ponents that involve two x- component fields and two y- component fields. This

equivalence between the x and y- directions is in contrast to the linear polyene case

where the - component dominates all others. Furthermore, the 7Yzzz2 compo-

nent of OT (13.5x10 - 3 ' esu) is far larger than any of the components of COT.

However, since COT has significant components in both the z and y directions, it is

more reasonable to compare values of the isotropically averaged susceptibility. For

COT, -a= 0.38x10 - 3 ' esu as compared to 3.4x10 -3 esu for trans-OT. As in the

case of comparing values for the trans and cis conformations of linear polyenes,

here also we must consider the actual length scale involved in the problem.

The important length for nonlinear optical responses is the largest length over

which charge can be separated due to the presence of an optical electric field. For

the linear polyenes, that length is the distance along the conjugation axis separating

the end carbons. For COT, the equivalent length is between two points on either

end of a diameter of the ring. Additionally, since wr-electron motion is constrained

along the carbon lattice, the relevant length is one-half of the circumference of the

molecular structure. This distance is 3.3 A for COT. For comparison, for trans-HT

(N=6) 7 g= 0.75x10 - 3 s esu at hw=0.65 eV and the end-to-end length L is 6 A.
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Thus, for these two very different structures where the relevant lengths are nearly i
equal, we find that the calculated values of -y are also comparable. In the case of

cyclic structures, the length which determines the magnitude of -yg appears to be i
one-half of the circumference.

3.4 Resonant X( 3 ) Processes

According to the microscopic description of nonlinear optical processes in

conjugated organic materials, highly correlated ir-electrons are responsible for the i
unusually large nonresonant nonlinear optical response of these novel structures. In

the nonresonant regime a nonlinear optical response results from virtual excitations

of the 7r-electrons, and response function can be obtained directl; from quantum

electrodynamics giving the microscopic, molecular hyperpolarizabilities aijk and

-7ijkl. However, as the light frequency approaches one of the 7r-electron optical exci-

tations, the response function is resonantly enhanced and the perturbation theory

employed to describe the nonlinear optical response at off-resonant regime does not 3
hold anymore. In the resonant optical excitations there occurs a real population of

the excited state and a depletion of the ground state accordingly, which depends

on the incident light intensity. Therefore the optical response function of the sys-

tem depends on the light intensity, which can be viewed as a third order nonlinear i
optical response.

In the resonant regime, the ir-electron excitation resonant with the incident

light can be modeled as a two-level system. A quantum mechanical description of a

two-level system with the resonant excitation is well-known, especially from nuclear

magnetic resonance experiments (NMR)[ 171 where a permanent magnetic dipole

moment driven by a coherent radiofrequency magnetic field shows a characteristic

resonance behavior revealing the microscopic properties of the local environment. 3
The same mathematical formulation developed by Bloch [ls] to describe NMR is

applicable to the two-level electronic system resonant with an applied field.l9[ 20 1
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The two physical systems directly map one for one, except for the difference in

scaling of the relevant physical parameters. In NMR, for example, the wavelength

of the radiofrequency is large compared with the sample size; hence, the absorption

length is long and the propagation effect is negligible. In the coherent optical case,

however, the optical wavelength is much smaller than the sample dimension, and

coherent propagation effect takes place within the sample.

In the subsequent sections, we review the Bloch equation in a density matrix

formalism and discuss coherent optical transient effects. The steady state solution

of the Bloch equation is studied next, leading to the definition of the intensity

dependent refractive index.

3.5 Bloch Equation; Transient Behavior

Let's consider a non-degenerate two-level system with eigenstates 1) and 12).

Ho11) = -1hw 8.l) (3.5.1)

Ho 12)- + 1 .12) (3.5.2)

The time dependence of the wave function 'P(t) of the system interacting with the

external field V can be described by expressing AP(t) as a linear combination of I1)

and 12) with the time dependent coefficients.

41'(t) = a(t)e 2 t11) + b(t)e-i"t12) (3.5.3)

The time-dependent Schroedinger equation for the full Hamiltonian H = H0 + V

leads to a pair of equations, i.e., from the orthogonality of 1) andl2),

da(t) at(t)tV) +b(t)I t V) 2  (3.5.4)

dt

d hdt = a(t)e "tV21 + b(t) V22  (3.5.5)

where Vi, are the matrix elements of V. The Eq.(3.5.4) and (3.5.5) describe the

I time evolution of a two-level system.
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The time dependence of a two-level system in an external field can be de- m

scribed in a density matrix formalism following Feynman et al.,[2 11 which gives a

simple geometrical representation of the temporal behavior of the resonance re-

sponse. The density matrix p of a two-level system is 2 x 2 matrix, hence, can be

written as a linear combination of the identity matrix and Pauli matrices.

p(t) = 1(1 + fr(t)F * 5) (3.5.6) I
where the 3-vector FF is the linear coefficients of the Pauli matrices and is uniquely

determined in terms of matrix elements of p. In the same way the full Hamiltonian

H can be expressed as I
H - fjF • ; (3.5.7)

where the 3-vector f F is the linear coeffieients. The equation of motion for the

density matrix p is
Sd,ih-p(t) = [H,p(t)] (3.5.8)

The left hand side of Eq(3.5.8) is =

•ddl ) ldF(t)F m
ih-d p(t) = iA 1(1 + t)F 6)_=_A2 dt_ ' (3.5.9)

dt dt 2 2 dt

while the right hand side of Eq(3.5.8) is I
[H,p(t)] I hhff0,1(I + r-t) 5)] 1

1 (OF * 6, rj ) 9 *

((hfiF . 5)(r(t) 5) - ((t). e5)(fIF 5))

2i(h F x r-(t)) (3.5.10) 1
4

where the following identity of Pauli matrices was used I

(A. , )(B Y) = A* B + i( x B).5,,. (3.5.11)
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I Substitution of Eq.(3.5.9) and (3.5.10) into Eq.(3.5.8) transforms the equation of

3 motion for p to the equation of motion for F in terms of F and Si F,

~d jt)F = 5FX rt (3.5.12)

Eq.(3.5.12) describes the rotation of the 3-vector FF around the rotational axis

I defined by the 3-vector f1 F, as is well-known in the newtonian equation of motion

for a rotating rigid body. The 3-vectors F(t)F and !jF are related to the matrix

elements of p(t) and V in the following way.

rjt / P12 + P21
) +i(p2 1 - P12) (3.5.13)

I P22 -P11

6F H 12 + H21 I V 2 + V21

_F +i(H21 -H 2 ) +i(V21 - V12) (3.5.14)
-= H 22 - H il h V 2 - V II + h W.

3 Now we consider the interaction of the two-level system with a resonant

incident light. For ie linearly polarized light with the frequency w,

Ei = i(ei + - = Re{ie } (3.5.15)
2

- the interaction Hamiltonian in the dipole approximation is (Refer to Appendix A3)

• ~~- 1. ~t +,,

1 2SV=-fii E/ = -ji. • (ee-' + ~ett.(3.5.16)

IEq.(3.5.14) becomes
fF = (F cosw,0, W.)

= (-cecos wt, - i sin wt, 0)

+ (-e cos wt, +c sin wt, 0) (3.5.17)

+ (0,0,..W)

I_ + _l-F .+ ioF
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where

-= - h. (3.5.18)hI
jF is composed of three vectors, FF processing around it. CI+F(6-F) is a vector

with magnitude me, lying on the 1-2 plane and rotating around 3-axis with angular 3
velocity w(-w), while SloF is a constant vector along 3-axis with magnitude w.. Ac-

cording to Eq.(3.5.12) F is processing around CIF with angular veocity IfIFj ;z w"'

(noting rce << w,). In the rotating wave approximation (RWA), jj-F is ignored

since !5-F rotates with the angular frequency w + w, L 2w relative to FF, hence,

this rapid oscillation averages out in time and does not give an accumulative vari-

ation in amplitude. That is, in RWA, which is equivalent to ignoring e+iw' part in 3
Eq.(3.5.16), fF ; 6"+F + 6jOF = (-c coswt,-,-esinwt, w) (3.5.19) I

As shown in Figure(3.4), f2 F is a 3-vector rotating with angular frequency -w 3
around axis 3, and we make an orthogonal transformation to the frame where 6F

is stationary.)n

= w = -snt0coswt 001 rr (3.5.20)I

Co cost sinwt (r

fl= -sinwt coswt 0 1 (F5.

0 0 1,/(Cos Wt sinwA 0 -Djcst\ KF

= -sinwt cos wt 0 - sinwt 0 (3.5.21)
0 0 1I W, Wa ) I

dF d
= - (3.5.22)

Refer to Appendix A4 for another way to make an orthogonal transformation. In

the new frame (see Figure(3.5)) the Schroedinger equation has the same form as 3
Eq.(3.5.12), dil(t)

dt ) x ( (3.5.23) 3
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with

f -- 0 = 0 (3.5.24)

= f= (,e)2 + A2 (3.5.25)

Eq.(3.5.23) is the Bloch equation when the damping is ignored, essentially equivalent

to the time-dependent Schroedinger equation Eq.(3.5.4) and (3.5.5). The precession

frequency fl, called Rabi frequency, depends on the light intensity as well as the

detuning A. The Bloch equation in an explicit form is

Uu = - - (3.5.26)

= AU + w -Q (3.5.27)

I= - -,ev I (3.5.28)

Here the phenomenological relaxation times T (longitudinal) and T2 (transverse)

are introduced to account for the population decay and the coherence decay re-

spectively. The macroscopic coherent superposition state decays out in time either

through the spontaneous emission (T1 ) from the excited state ending up with the

equilibrium population corresponding to Weq or through the dephasing (T2 ) be-

tween the microscopic dipole moments, resulting in zero polarization even for a net

inversion of population during the time shorter than T1. T2 is the inversion of the

homogeneous broadening contribution to the optical linewidth. There are various

contributions to the dephasing, one main contribution coming from a spontaneous

decay of the excited state itself, 1/2T1 . More explicitly, from Eq.(3.5.3) we can

find the time dependences of the polarization p(t) and the polpulation n(t). The

polarization p(t) is given as an expectation value of dipole moment.

p(t) = (2(t)Ixll(t)) =*e-1/2 Tb(t)a(t)e"'(2il1) (3.5.29)

n(t) = (2(t)12(t)) - (l(t)jl(t)) = e-/ T 'b'(t)b(t) - a*(t)a(t) (3.5.30)
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We find that the finite lifetime of the excited state affects the lifetime of a micro- U
scopic dipole moment, setting a limit on the dephasing time. Pure depahsing, not I
originating from a finite lifetime of the excited state, comes from various sources de-

pending on the microscopic line broadening mechanism. In gas, collisions with other u
gas atoms or molecules are mainly responsible for a dephasing, while a phonon scat-

tering with an optical excitation is accountable for the line broadening. Sometimes,

these pure dephasing rates are called T' to distinguish it from the inhomogeneous

contributions, called T2, coming from a Doppler broadening or a site broadening.

The relaxation times can be calculated theoretically once the microscopic relax-

ation mechanism is known. The temperature dependence of the relaxation rates for 3
a two-level system in an amorphous medium will be discussed in Chapter 4.

A rigorous solution of the Bloch equation Eq.(3.5.26)-(3.5.28) is available, 22] 3
but here we consider a simple transient case when T, and T2 are long enough or

during the time the system did not relax to equilibrium. When the damping is

ignored, the equation can be solved analytically. According to Eq.(3.5.24) 6 is a

3-vector in the 1-3 plane. Now we make transformation to a coordinate where ! is

along the 1-ajJs. The transformation matrix is 3
osO 0 sin 0

R(9 = arctan 1 1 0 .(3.5.31)

-sin0 0 cos0

The Bloch vector is affected in the same way yielding

r4 (t) = RF(t). (3.5.32)

In the new frame the Bloch equation is in the same form again as Eq.(3.5.12), I
d(t)=) 6

dtt f = (0 0 Q (3.5.33)(it0 -f)

with 4

wi0=(). (3.5.34)

0
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I The solution of Eq.(3.5.33) is straightforward since P is rotating around the 1-axis

with the angular frequency f.

* i4(t) = vI(t) = fl1'(0) = cosf~t -sinf1t r'(0) (3.5.35)
W'(0) 0 sin 11t cos Qt

Now transforming back to F(t),

u(t)
(t) V(t) = R-(t) = R-Oi'(0) = R- 1 ORR-4(0) = R-flRF(0)w(t)/)

Ssin fit cos 11t l sin flt v(0) (3.536)
-A'P.! ft) sinf1t 4 2 +(#CC)ICOS at W(0)

This is called the Rabi solution [' and describes the interesting transient resonant

behavior of a two-level system interacting with a radiation field. Let's consider a

couple of special cases of Eq.(3.5.36). First we assume that at time t = -oo the

two-level system was in the ground state (wo = w(0) = -1) and in an incoherent

state (uO = u(0) = 0, vO = v(0) = 0). If the light frequency is on resonance with the

two-level system eigen frequency, i.e. A = 0, the vector 1i is on the 1-axis and the

solution is quite simple as can be seen directly from the geometrical representation.

With the given initial conditions the Bloch vector r(t) rotates around the 1-axis on

the 2-3 plane, starting from the negative 3-axis. It is useful to define the area O(t)

of the incident pulse at time t,[2 4 )

O(t) = J dt'. (3.5.37)

After the time corresponding to O(t) = ir, a complete inversion of population occurs,

the Bloch vector along the positive 3-axis. At time corresponding to 21r the two-level

system restores back to the initial configuration where all the molecules are in the

ground state. When a coherent optical pulse with total pulse area of 27r propagates

through a Bloch system, the coupling of Maxwell equation to Bloch equation leads
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to a self-induced-transparency, as the excitation of the two-level system by the first I
half (area ir) of the pulse is followed by a coherent deexcitation by the second half

(total area 27r) resulting in no net absorption by the absorber.[2 s -2 9]

In the original frame the vector 6 is rotating with the optical frequency w

(-,- 10" Hz) with the Bloch vector F" precessing with the Rabi frequency (--

108 Hz on resonance for the light intensity 100W/cm 2 and the dipole moment

10- Debye, I Debye = 10-"esu cm). The precession is damped out in time from

the relaxations of T1 and T2 , similar to a spinning top precessing around a fixed axis

damping through the friction. For a step-function light pulse this precession shows

up as an intensity modulation near the leading edge, and the decaying modulation

can be observed for many cycles when the Rabi frequency is much higher than

the dephasing frequency, easily achievable with a sufficiently high incident light 3
intensity. This phenomenon is called optical nutation,0-(2] after the similar well-

known nuclear magnetic resonance effect of transient nutation. Other interesting

coherent transient effects include free induction decay 3 1 and photon echo, 34 ]

the basic physical idea of which is easy to understand from the geometrical picture

discussed above. Nonlinear optical process can be combined with the coherent

resonant optical process to give a Raman echo or trilevel echos33 sV- 4'J

3.6 Steady State Solution of Bloch equation U
Now we examine the steady state solution of the Bloch equation. In steady I

state, the time derivative vanishes, and the solution is staightforward. I

U = - KcT 2 AT2  -e 361
1 + A2T2 + T1 T2 ,C2e2  (36) u

seT

V = -xcT2(3.6.2)

-I T2 Weq (3.6.3) 11 + A 2T2 + TT,2 C2
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I In order to get a physical understanding of the Bloch equations, let us con-

sider a classical Lorentzian oscillator. A comparison of the classical oscillator with

the quantum mechanical oscillator gives a better understanding of a Bloch equation.

3 The equation of motion for a classical Lorentzian oscillator is

d 2 dx 2 e eiitt - 2 - -(3.6 .4 )
m

The steady state solution is

1 1
X~ - C

aW2 2 + '2yfw m

(W - w 2 )2 + 472W2 e (3.6.5)
* with

htan 0 =_ 2w 
(3.6.6)

Now we solve Eq.(3.6.4) by a similar method empolyed to solve a quantum mechan-

ical two-level system. Let

3 z(t) = (u(t) + iv(t))eiwt  (3.6.7)

Keeping terms up to first order, which is sufficient for studying resonance behavior,

u1 = -Av - -u= -- V - -- (3.6.8)
T2

=Au -- YV- - = Au - -- - (3.6.9)
m 2w T2

with

e =(3.6.10)

* 2m4,

The steady state solution is
rl T2 A T2  (3.6.11)

eT
V 1 C A2 (3.6.12)
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Comparision of Eq.(3.6.11) and (3.6.12) with Eq.(3.6.1)-(3.6.3) shows the difference U
between the classical Lorentzian oscillator and the quantum oscillator described by

the Bloch equation. First, the term T1 T2 ic
2C2 in the denominators for the quantum I

oscillator comes from the coupling between v and w and there is only a phase

relaxation time in the classical oscillator while there are two kinds of relaxation

times in the quantum oscillator. It is obvious that in the limit T1 - 0, w = Weq and

there is no difference between the classical and quantum oscillators. Second, if we

set w = Weq = -1, the Bloch equation Eq(3.5.26)-(3.5.28) reduces to the classical

oscillator equation Eq(3.6.8)-(3.6.9), which means that the characteristic nonlinear

response of the quantum oscillator comes from the real population of the upper

state of the two level system. I
3.7 Nolinear Optical Susceptibility; Intensity-dependent Refractive

Index

In order to get the nonlinear optical susceptibility of the Bloch system to the 3
external external field, we calculate the expectation value of the polarization.

N(p(t)) =Ntr(p(t)I) = NI,(p12(t) + p2 1(t)) U
=NprF(t) = Nji(ucoswt - v sinwt)

=Re{N I(u - iv)e - iwt } (3.7.1) I
Introducing a complex susceptibility X(w),

N(p(t)) =Re{xE} = Re{(X' + iX"))e - t }

=(X' coswt + X" sin wt)c. (3.7.2) j

Comparing Eq(3.7.1) and Eq(3.7.2), tile complex susceptibility X can be expressed 3
in terms of u and v.

x =N-u, X -N-v (3.7.3)
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Substitution of Eq.(3.6.1)-(3.6.3) into Eq.(3.7.3) leads to the steady state suscepti-

bilities x' and x".

1 = 2 T2 5No A T2
X h 1 AT + T1 T2 C 2  (374)

to A'T2bNo 1
X = h 1 + A2T +TT 2

2 2  (3.7.5)

1 b~o TI + 2T 2
2  (3.7.6)6N =6No1 + A2T22 + TIT2K2C2

where

SN = Nw, SN 0  Nweq. (3.7.7)

The complex susceptibility can be written in terms of the linear absorption coeffi-

cient on resonance. Noting

17 + ic -- V ie" = V1 + 47rX' + i4lrx" (3.7.8)

and the following relation of the linear absorption coefficient a0 to the imaginary

part of the susceptibility

47rw 2
a0 = 2 . - = 47r-x"(A = O,C -- 0) =T21 (3.7.9),

C c

we get the complex susceptibility of a Bloch system in steady state from Eq.(3.7.4),

(3.7.5), and (3.7.9).

aoC )( A2 +

1 + A 2 + I/I) (3.7.10)

where

___ _ )2 (3.7.11)

and A is redefined as

A = AT 2 = (w - w.)T2. (3.7.12)
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To get the third order nonlinear susceptibility x(') or n2, we find the linear I
coefficient of the term that is linear in intensity when the Bloch susceptibility is

expanded. I
77 = I + 2lIX' = 1 + ( )/ (3.7.13)

Now
n2 = d -- )(1 + A2)2 (3.7.14)

The term depending on the detuning, (--%)2, has the maximum value when A

equals to 1. Therefore, the maximum value available for n2 is

'U' In2 = ±0.026- .
(3.7.15)

A remark is necessary for the physical units of the third order susceptibility.

The refractive index is a dimensionless physical quantity either in cgs units or in 3
MKS units. The intensity dependent refractive index n 2 is defined as I

n = no + n21. (3.7.16) I
The incident light intensity is the absolute value of the Poynting vector S. For the

linearly polarized light as denoted in Eq.(3.5.15), 3
fces)l=f- c c I

I(esu) = i X -= -C /= * /- = -no H2  (3.7.17)
4i~r 4v 42 Y. 8ir

I(MKS) 1-cnocolell (3.7.18)
2

The dielectric constant e is related to the susceptibility and the refractive index in 3
the following way.

= n = (no +21) = n2 + 2non 2 I

1 + 41r- = 1 + 4-rX (') + 41rX("ce (3.7.19) 3
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In cgs units the susbstitution of the intensity from Eq(3.7.17) into Eq.(3.7.19) leads

to the following relation.

n2(esu) = 1 ( 4r) 3) (es9u) (3.7.20)

In MKS units the relation between the susc-ptibility and the dielectric con-

stant is different.

= (1 + X) (3.71.21)
E0  C0

Taking Eq.(3.7.18) into Eq.(3.7.21) gives

n2(MKS) = 1 (1 ) X(3) (MKs5) (3.7.22)
c fl 0 C0

In a real experiment, the units of cm 2 /kW is often used for n2. Noting

n 2(esu)I(erg/cm 2 sec) = 10-10n2 (C.M 2 /kW)I(kWcm2'), (3.7.23)

we then have

21010 4r2()1 41r)2
n,2 (cm /kW) = 10l 0n2 (esu) = - ( -) X 3(esu) = (~ x( 3)(eSU). (3.7.24)

C no 3n

For i semiconductor, n2 in cmn2 /1kW has value similar to X(3 in eju units.
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Figure Captions: Chapter 3

Figure 3.1; Schematic Diagram of Cyclo-Octatetraene

Figure 3.2; Density Matrix Diagram for Cyclo-Octateraene

Figure 3.3; THG Dispersion Curve for Cyclo-Octateraene

Figure 3.4; Bloch Vector in Pauli Matrix Space

Figure 3.5; Bloch Vector in a Rotating Frame
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The symmetries, energies and selected transition dipole

moments of the calculated low-lying states of trans-octatetraene

Symmetry Energy (eV) lIn (D) I B (D)

21 Ag 4.15 0.00 2.82

IlBu 4.42 7.81 0.00

21 Bu 4.79 0.86 0.00

31 Ag 5.19 0.00 0.07

41 A9 6.00 0.00 2.84

51 Ag 6.07 0.00 1.11

31 Bu 6.47 0.01 0.00

41Bu 7.01 1.11 0.00

61 Ag 7.16 0.00 13.24

51 B, 7.30 1.14 0.00

Table 3.1
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I

The symmetries, energies and selected transitin dipole 3
moments of the calculated low-lying states of cycio-octatetraene

Symmetry Energy(eV) g , g(D) Y4,(D) Wn ,2ED I4,EI
11 A2g 2.24 0.00 0.00 -1.60, 2.40 -2.40,-1.60

2 1 AIg 3.19 0.00 0.00 0.14, 0.09 -0.09, 0.14 I

11Eu 4.41 0.05 -0.03 0.00, 0.00 0.00, 0.00

11 Eu 4.41 0.03 0.05 0.00, 0.00 0.00, 0.00

1IB2g 5.21 0.00 0.00 -0.33, 0.50 0.50, 0.33 U
l 1 BIg 5.94 0.00 0.00 1.03, 0.68 0.68,-1.03 3
2 1Eu 6.48 4.58 -3.04 0.00, 0.00 0.00, 0.00

2 1 Eu 6.48 3.04 4.58 0.00, 0.00 0.00, 0.00 I
I
I

Table 3.2 I
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Schematic Diagram of Cyclo-Octatetraefle
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Density Matrix Diagram for Cycio-Octatertaene I
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THG Dispersion Cur 3 for Cyclo-Octaietraene
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Bloch Vector In Paull Matrix Space3
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Bloch Vector In a Rotating Frame
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CHAPTER 4

OPTICAL EXCITATIONS IN RANDOM GLASS MEDIA: 3
LINEAR OPTICAL PROPERTIES

A major purpose of this study is to investigate optical instabilities in random

glassy polymers resonantly driven by intense laser fields through the intensity de- I
pendent refractive index. The nonlinear optical excitations in random glass media

and experimental study of the intensity dependent refractive index are presented in I
Chapter 5.

In this chapter, we first address the linear optical excitations of glassy poly-

mer ultrathin film consisting of quasi-two dimensional disc-like structures randomly I
distributed in a glassy matrix. A major result is that the optical absorption consists

of an inhomogeneous, site-broadened band of very many narrow homogeneous lines I
from the on-site optical excitations of the conjugated discs. A physical model for

the linear optical excitations of the glassy films is presented based on theoretical 3
description of random glass media by Anderson, Halperin, and Varma[41], which is

an insightful approach focused on the microscopic mechanisms for broadening of 3
optical excitations.

Optical linebroadening occurs when an optically active atom is disturbed by I
its interactions with other atoms, or excitations. In a gas, for example, the spectral

line is broadened through the collisions with the other atoms in the gas, which is

called 'pressure broadening ' (II - (31. At a very low pressure, the emission spectrum

of an atom has a narrow bandwidth corresponding to the excited state life time for

an optical transition. As the gas pressure is increased, there occurs non-negligible 3
collisions between the atoms which destroy the coherence of the dipole radiation.

When we focus on the dipole moment-of a single atom, all the other atoms in the 3
gas can be viewed as a heat reservoir acting as a noise source giving stochastic and

random collisions to the atom of interest. The collision distorts the electron wave 3
97 I
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function for both the excited and the ground state of the atom of interest, and the

distorted wave functions are not the eigen-states of the isolated atom. The dipole

radiation from an excited state to the ground state of an atom with a distorted wave

function is different from the dipole radiation coming from an isolated atom. When

a frequency spectrum of the dipole radiation is examined, the line width appears

broadened and the peak maximum shifted. Similar effects can occur in a condensed

matter. Optically active ions embeded inside a crystalline lattice exhibit a different

optical spectrum depending on the lattice temperature. Here the phonons in the

lattice interact with the optical dipole moments of ion. The phonon bath acts as

a noise source for the stochastic collisions. Without these stochastic collisions, the

atom is isolated from the environment, and the spectral line width is determined

by the natural radiative decay rate coming from spontaneous decay.

A physical picture of linear optical excitation of 7r- electrons in optical sites

randomly distributed inside a polymer matrix is neccessary for the proper under-

standing of nonlinear optical processes in the same molecules. Quasi-two dimen-

sional disc-like structures as the optical sites provide a number of important features

and properties for sucessful studies of resonant nonlinear optical processes. Pri-

mary among these is the presence of optically intense low and high frequency bands

in the visible and ultraviolet generally observed in large diverse classes. Among

such classes are the well-known, large ring porphyrin and phthalocyanine struc-

tures which exhibit well-defined intense Q and Soret bands in the visible and near

uv, respectively, and in addition, possess important secondary material properties

such as thermal and chemical stability and ease of fabrication and processing. Free

base porphyrin, for example, has long been identified as an analog of 18-annulene

which possess nine double bonds, so that the microscopic description of the linear

and nonlinear optical excitations for cyclic chains such as COT may be extended

to these larger structures.

First, the linear optical properties of thin films of naphthalocyanine will be
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I
described in Sec.4.1. Next, we present a formal description of a homogeneous line I
broadening mechanism from a view point of the linear response theory. After re-

viewing spontaneous decay for an isolated optical atom or molecule, a line shape I
function is defined in Sec.4.2. The problem of line shape change through interactions

with other excitations is addressed by statistical mechanical methods. The bath, I
however, is not just a heat reservoir but a source of interactions which should be

considered explicitly to determine the effects on the system. This is an irreversible

statistical problem, where there are couple of different approaches. One approach

will be a Brownian particle-like description where the stochastic forces are accounted

for explicitly in the equation of motion. This approach is conceptually clear but

lacks a systematic method for a higher order perturbation calculation. We adopt a

projection operator method which is widely used in solving the irreversible statisti- I
cal mechanical problems. Here the quantum mechanical equation of motion for the

system is expanded in the interaction Hamiltonian, but the bath is assumed to be 5
unaffected by the interactions and always in a thermal equilibrium. The projection

operator technique will be presented in Sec.4.3. In Sec.4.4, the general formula for a 3
homogeneous line width of an optical site embeded in a medium will be derived by

use of projection operators. The general scheme for the derivation of homogeneous m

line shape will be a perturbative expansion of the transition matrix in the interac- I
tion Hamiltonian, which follows the standard procedure used to find the scattering

amplitude in quantum mechanical perturbation theory. g
In Sec.4.5, the formula obtained in Sec.4.4. is applied to find a homogeneous

line width for an optical site in a crystalline medium where elastic phonon scattering

is responsible for the line broadening. The amorphous material exhibits completely

different physical behavior compared to a crystalline system. A physical model for

an amorphous glassy material is preseinted in Sec.4.6, where a low excitation TLS n

(two-level-system) is introdued to explain the characteristic physical properties of

an amorphous system. In Sec.4.7, the homogeneous line broadening of an optical I
99 I
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site in an amorphous medium is calculated by combining the results of Sec.4.4 and

I Sec.4.6. The results are discussed in connection with experimental measurements.

14.1 Linear Absorption Spectrum of SINC

A phthalocyanine (PC) molecule possesses an intense absorption peak in

the visible wavelength, called a Q-band. The naphthalocyanine (NC) molecule is a

Iderivative of the PC molecule, naphthalene attached on the sides of the central nitro-

carbon conjugated ring rather than benzene. The absorption peak of NC is shifted

j toward IR, and the exact position of absorption peak depends on the solvents. In

general, PC molecule has a very low solubility (order of 10' mole/liter), therefore,

it is very difficult to prepare a thin sample with an appreciable optical density.

By susbstituting a silicon atom into the middle of the two-dimensional 7r-electron

ring of a PC molecule and attaching a polymer tail to the remaining electronic

sites of silicon atom, the solubility of PC molecule can be enhanced. That is,

the free volume of PC molecule can be controlled by changing the polymer tail.

Our sample consists of silicon-substituted naphthalocyanine (SINC) as shown in

Figure(4.1) and Figure(4.2). SINC is easily soluble in the solvent cyclohexanone

(density 0.947kg/liter) and 10% weight concentration is readily available. By spin-

coating the high concentrate SINC liquid solution on an optical flat, a good optical

quality thin film can be readily obtajied. Two kinds of thin films were made, that

is, a pure dye film and a solid solution film diluted in polymethyl-rmethacrylate

(PMMA) matrix.

In Figure(4.3) a linear absorption spectrum of a liquid solution of SINC in

cyclohexanone is shown. The molar concentration was 0.5iumole/liter with optical

path 1.0mm, and the Q-band peaks at 770 nm. Also seen are the phonon lines of

the Q-band at 735 nm and 690 rm. We find that the zero phonon line at 770 nm

is the strongest in absorption, which means that the Franck-Condon effect is much

reduced in this large molecule. Figure(4.4) shows the linear absorption spectrum of

100
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SINC pure dye film (a; solid curve) and SINC solid solution film (b; dashed curve). I
The optical spectrum exhibits an intense Q-band centered at near infrared (810nm

(a) and 774nm (b)) with a Linewidth of 0.1 eV. The films obtained by spin coating I
do not possess either positional or orientational long range order. Because of this m
random distribution of SINC molecules in the films, the excitations are strictly

on-site ir-electron transitions, which have a typical absorption coefficient a of J.0s

cm - 1 . The on-site 7r-electron optical excitations in an isolated molecule have an

intrinsic, temperature independent natural linewidth on the order of 0.1 to 1 GHz 5
with corresponding radiative decay lifetime of 1 to 10 ns. [41-I ]u

The Q-band behaves as a Gaussian shape inhomogeneous line consisting of

many narrow homogeneous lines. The large linewidth of the Q-band observed in

Figure(4.4) is primarily due to inhomogeneous broadening. This site broadening

in the thin film has a Gaussian shape which is a consequence of the statistical 3
distribution of resonance frequencies of the optical centers due to a variation in

local environment in the polymer matrix. Within the inhomogeneous broadened m

Gaussian envelope of the Q-band are a series of narrow homogeneous broadened

resonances where the characteristic temperature dependence of the linewidth de-

pends on the microscopic broadening mechanism. Each homogeneous line under

the Gaussian envelope is approximated by a Lorentzian function, and the width is

related to the temperature dependent population and phase relaxation rate of the

excited state by Fourier transformation. The amorphous material surrounding an

optical site can be considered as an ensemble of noninteracting TLS flip-flopping

between two eigenstates as they emit or absorb acoustic phonons. The homoge-

neous line broadening in amorphous media comes from the dipole coupling of the 3
optical sites with the TLS's, and the line width can be expressed in terms of the

TLS lifetime (or flip-flopping rate), the temperature dependence of which is de- n

termined from the coupling between the TLS and the strain field manifested as

acoustic phonons. 5
101 m

I



As discussed in Sec.4.7, temperature dependence of homogeneous linewidth

Iin amorphous matrices is well explained in terms of TLS glass model. In this way,

the line width of optical sites in the amorphous media is predicted to have T1+ 6

S(0< 6 1) dependence, and the absolute magnitude can be obtained once all the

physical parameters for the TLS are known. For various organic molecules in differ-

Jent polymeric matrices, the theoretically predicted temperature dependence of the

homogeneous Uinewidth is in good agreement with spectral hole burning data. Ig8j[9

IAccording to photochemical hole burning data on porphyrins and phthalocyanines

in various glasses and polymeric matrices, [10] the homogeneous linewidth of the

naphthalocyanine oligomer at room temperature is estimated to be between 10 and

100 GHz. For SINC films, comparison of the homogeneous linewidth (100 GHz)

with the inhomogeneous width (0.1 eV) shows that the Gaussian envelope contains

I on the order of ten thousand Lorentzian broadened resonances. [11l[121

Linear absorption spectrum at a various substrate temperature was measured

to find out a possible thermo-chromic effect in the SINC thin film. Refer to Fig-

Iures(4.5) (4.6). A SINC pure dye film was positioned inside a spectrophotometer

(Hitachi Model 330) sample compartment, and a hot air is blown onto the thin

Ifilm to increase the substrate temperature which was monitored by a thermocou-

ple. Upto 75°C, the absorption spectrum does not change, but at 100°C, the peak

I gets higher, and the peak shifts toward a shorter wavelength. But still the linear

absorption spectrum exhibits an intense Q-band. The changed spectrum did not

I recover back to the original spectrum, as the temperature is decreased, that is, the

changed spectrum remained the same. This suggests that the polymer tail attached

Iat the silicon atom affects the inhomogeneous broadening strongly, changing the

peak absorption magnitude and position. ir-electron optical excitation shown up as

Q-band, however, is very stable up to :he measured temperature. The thermochro-

matic effect is important in saturable absorption experiment on a thin film sample

to identify any heating effect, which will be discussed in Chapter 5 later.
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4.2 Lineshape Function I

The spontaneous decay rate of an excitation is well understood in quantum I
electrodynamics. According to Fermi's golden rule, the transition rate from the

initial state Ii) to the final state If) is given as

w,_f = -- I (f JI, i)126(Ef - E, - hw) (4.2.1)

where H, is the dipole interaction Hamiltonian. The total transition probability 1
per unit time is obtained by averaging over the initial states and summing over the

final states

,Piwi-.f (4.2.2)i,f

where pi is the probability that the initial state Ii) is occupied. Now we calculate

the power of the emitted light of frequency between w and w + dw. The emitted

power is 3Vd 3Ic

dP(w) = twr(w) (2-) (4.2.3)

where Vd 3k/(27r)3 accounts for the number of states allowed for the photons with

energy hw. Noting the phase space of photons and the following identity for Dirac-

delta function,

Vd 3 k Vk 2dkdfl _ Vw2 dwdfI (4.2.4) U
(2) (2r)3  (2r)3c 3

1 J eiwt dt (4.2.5)

and the normalizatoion of the electromagnetic field in second quantization (See I
Appendix Al),.g

()=-Z 2IaLw(bt - i(wt-kz eiwtk)
E~xi) V A A - be,\(4.2.6)
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the angular spectral cross section of the emitted power is

dP(w)

2ff Vw22

= w pi--I(fIH I1i)I 2 6(E f - E i- ,)

2 2 e(2r) 3C3 j, f__ dtexp{i(w - Wi + wf)t}
= hw,-' __ e i~f(lI)( )---2r

= hwec 2Wc2 2-f W dtei Zpi(*xjf)(f elwtzeiti)

= e2 W3  f dtei t Czz(t) (4.2.7)
= C Fic 2c 2 27r

C,,(t) is auto-correlation function of dipole moments. The power spectrum is com-

posed of the photon energy, the phase space factors, and a Fourier transform of the

dipole auto-correlation function. [131-[1"] The lineshape function F(w) is defined as12 00
F(w) = j dteitCzz(t) = Rel dte'tCzz(t) (4.2.8)

Noting that 1i) and If) are the eigen-states of the unperturbed Hamiltonian H0 , the

auto-correlation function can be rewritten as follows:

C2.(t) = Z pj(ixIf)(f e'HO t/he- iHot/hii)
i,!

= E pj(ilze itot/hXe-iHotlhii)
i

= ' (ijxz(t)li) = Tr{poxz(t)} (4.2.9)

where we used the Heisenberg equation motion for z, and a density matrix po defined

as

po = EPijIi)(UI = Epiiji)(U1 (4.2.10)

has been introduced. The auto-correlation function is a quantum mechanical aver-

age value of the product of the dipole moment at time 0 and the dipole moment at
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time t. We see that if the interaction Hamiltonian commutes with the unperturbed I
Hamiltonian H0 , the correlation function is independent of time, and the transi-

tion probability is zero. A time independent correlation function means that the

dipole moment does not change in time and maintains coherence in time. But in 3
the optical transition, the dipole interaction Hamiltonian does not commute with

the unperturbed Hamiltonian HO, and the dipole interaction causes a change of 3
dipole moment in time; therefore the dipole moment is not coherent with the inital

moment any longer. This incoherence shows up as a finite life time of the excited 3
state. For a general discussion of linear response theory, see Appendix A5.

For later use, we write the correlation function in another form employing

a Liouville operator L0 , or a Liouvillian.[181I The quantum mechanical equation of

motion for the density matrix of a system with a Hamiltonian H0 is given as 3
irdP°(t) = [Ho,po(t)] = Lopo(t) (4.2.11)

and can be solved formally to give

po(t) = e-t/t'po(t = O)e+i 'ot/& = -iLot/& po(t = 0) (4.2.12) 3
The Liouvillian can be understood to be a superoperator acting on an operator in 3
Hilbert space, or, in a reverse way, an operator in Hilbert space can be viewed as a

vector in a Liouville space with the Liouvillian as an operator acting on the vectors. 3
The quantum mechanical equation of motion for the density matrix in Liouville

space can be interpreted as an equation describing a rotation of the density matrix 3
'vector' upon the application of the Liouvilian. The bases of the Liouville space

can be formed from the bases of the Hilbert space, I
Ii)(JI = ij)) = ((i1 (4.2.13) 3

where we introduced the Ben-Reuven notation.19 ]-["2 In Liouville space, the den-

sity matrix is a vector with components pij. I
P= EZpi j i)(j  E PijiJ)) = Ip)) (4.2.14) 3

ii ii
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A quantum average of an operator in the Hilbert space is expressed as an inner

Iproduct of the density matrix and the operator.

(Q).. = Tr{pQ} = E pijQji = (KIQ)) (4.2.15)
ij

With these notations, the correlation function is expressed as

C.,(t) = Tr{poxx(t)} = Tr{poxeiHt/1 hze- iHt/ }

= Tr{ze-iH/t(poX)eiHot/h}

= Tr{ze-iLot(pox)} = ((xIe-iLot(poz))) (4.2.16)

Substitution of Eq.(4.2.16) into Eq.(4.2.8) yields the lineshape function F(w) in

terms of the Liouville operator.

F(w) =1 Ref dteitTr{ze-iLot(poz)}
7r f

I -- ImTr{z 1 (pox)} = -lm((z (pox))) (4.2.17)
ir W - Lo r w - Lo

When the system is in thermal equilibrium with a heat reservoir, the density matrix

is given by a canonical distribution.

IPo -exp{-3H 0 } z exp{-/E,} (4.2.18)
Trexp{-3Ho} -exp{-OEj l  4.1

4.3 Line Broadening in a Projection Operator Formalism

Now we consider a system composed of two subsystems interacting with each

other. One subsystem is supposed to be much smaller than the other subsystem,

and the small system is called 'system' and the large system 'bath'. The bath is in

thermal equilibrium with a canonical -distribution. The Hamiltonian of the entire

system is
H = Ho' + H b + V 

(4.3.1)
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Because of the presence of the interaction between the system and the bath, a I
direct product of the eigen-states of the system and the bath is not an eigen-state

of the entire system. Furthermore, when the correlation function of an operator is

considered in studying the response function of the system upon the application of

an external field, we need the density matrix of the entire system, i.e., system plus

bath, and the density matrix of the entire system is not just a direct product of the

individual density matrices. Even if the exact solution form of the density matrix

p(t) for the entire system is required to describe the time evolution of the correlation

function, most of the important physical properties of the sytem of interest can be

obtained without complete information on the density matrix of the entire system 3
including the bath. Usually the bath is assumed to belong to a thermal equilibrium

canonical ensemble, and, hence, the density matrix of the bath is given by the I
canonical distribution. That is, the bath has a fixed density matrix obeying the

canonical distribution, and, at the same time, is a source for an interaction with I
the system. This role of the bath is in accordance with the concept of a bath. The

system is affected by an interaction with the bath, and the time dependence of the

density matrix for the system is determined by the interaction Hamiltonian, but

the effect of the interaction on the bath is ignored so that the bath is always in a

thermal equilibrium.

In general, we are interested in the response function of the system rather

than the entire system, which means that when we take a quantum average of a

correlation function, the bath variables can be eliminated by taking a trace over 3
the bath states. As a specific example, we consider an optical dipole moment

interacting with lattice vibrations. See Figure(4.7). The entire system is composed 3
of an optically radiating dipole moment and a phonon bath. The phonon bath

is in thermal equilibrium belonging r a canonical ensemble, which means that 5
the phonon bath follows the canonical distribution. When we are interested in

the optical properties of the entire system, the optical response comes from the 3
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optical dipole moment only, and there is no optical response from the phonon bath.

However, through the interaction between the dipole moments and the phonon

bath, the optical property of the system is affected by the physical properties of

the phonons. These considerations allow us to define a projection operator such

that the .ath variable is averaged out and replaced by a value weighted with the

thermal equilibrium density operator for the bath. For example, the relevant part

of the density operator for the entire system is

pI(t) = pbTrbp(t) (4.3.2)

The projected density operator is still an operator acting on the entire system, but

the bath part of the density operator is explicitly given by the canonical distribution.

Once the projected density operator is known, the quantum average value of an

operator that pertains only to the system can be obtained by using a density matrix

for the system which is defined to be

p'(t) = TrbpI(t) (4.3.3)

For example, the macroscopic polarization from the entire system is given as

P (t) = N T r {p (t) "} = N T r{ p1 (t) p' }

= NGTr{pbTrb{p(t)}/I} NaTr{Trb{pb}Trb{p(t)}/pO}

= N.Tr'{Trb{P(t)} } N.Tr'{pi(t)p} (4.3.4)

Similarly, the lineshape function F(w) for the entire system depends on the corre-

lation function of the dipole moments of the system. The auto-correlation function

is given as a quantum average over the entire system. But the relevant operator

depends on the dipole moments of the system only.

C,,(t)= Trf.'e-f iHt/h^p-eiHt/h I = Tr{zs e-iLtp z }

= Tr{z'D(t)} = 1r{x'"D(t)} = Tr{zspbTrbD(t)}

= Tr'{z'Trb{DI(t)}} = Tr'{z'D,(t)} (4.3.5)
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where D(t) is an operator related to the correlation of the dipole mements, defined I

D(t) = eit(pz ") (4.3.6)

This can be understood as a formal solution for the time evolution of pz'. The I
projected operator for D(t) is denoted as D, (t), and only this projected opera-

tor determines the time evolution of the correlation function of the optical dipole

moments. D1 (t) is given as

DI(t) = pbTrbb(t) (4.3.7)

Now the lineshape function can be expressed in terms of the projected operator 3
D IM(t. 1t 

' tT '{ " r f ,( )F(w) = -Re dtei tC,.(t) = R dteitTrS{zSTrb{b(t)}}
7! 0  7R

1 ReTr'{z'Trb{ dtet t Di(t)}} = ReTr'{z'Tr{Di(w)}}
7! J0  7!

= 1ReTr'{z'D(w)} 
(4.3.8) 3

With the above examples, we find that the projector operator, which is important in

the description of the interaction between the system and the bath, is the summation

over the bath variable and the multiplication of the canonical distribution density I
matrix for the bath. The explicit form of the projection operator[211-[23 is given as

P{A} pbTrb{A} (4.3.9)

with

STrb e 3Hb (4.3.10)

In the Ben-Reuven's notation useful im a real calculation, 3
P = lpb))((lbl = pb)) Z((al (4.3.11) 1
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It is easy to see that the projection operator defined above is indeed a projection

operator, i.e., P 2 = P.

e-3Hb

P 2 {A} = pbTrb{p{A}} = pbTrb{e-pMb Tr A}

= pbTrbA = P{A} (4.3.12)

Furthermore we see that the projection operator defined above commutes with the

unperturbed Liouvillian of the entire system.

a PLo = Ipb))((1bI(L + L') = lpb))((lb IL' = LsP (4.3.13)

and

ILP = (Ls + L )lpb))((lbl = L lpb))((lbl (4.3.14)

That is,
T i 

[P,Lo] = 0 
(4.3.15)

Now that the projection operator is given in an explicit form, let's look at the

physical properties of the projected part of an operator for the system. At t = 0,

the system can be approximated to be independent of the bath. That is, we assume

that the interaction between the system and the bath started at t = 0. This means

that the density matrix at t = 0 can be approximated to be a direct product of the

density matrices of the system and the bath.

-p pb (4.3.16)

I Furthermore, the bath is in a thermal equilibrium with the heat reservoir, and the

density matrix is given by a canonical distribution with the energy levels determined

by the eigenvalues of the bath Hamiltonian.

Lbpb = 0 (4.3.17)

3 The fact that the initial state is in a thermal equilibrium means that the density

operator is an eigen-state of the projection operator with the eigenvalue 1. That

* 110



I

is, the density operator at t = 0 is already assumed to be a direct product of each U
density operator. 3

Pp(t = 0) z Ppspb = pbTrb{p'pb} = pY p (4.3.18)

or in another words

p1(0) = p(O) (4.3.19) 3
It is easy to see that if the density operator satisfies the approximation in Eq.(4.3.16)

the operator D(t) introduced in Eq.(4.3.6) is also an eigen state of the projection

operator at t = 0. 3
PD(O) = pbTrb-{pz5} z pbTr61p'pbz } = p6p $X = D(o) (4.3.20)

or

D,(0) = D(0) (4.3.21) 3
Now we present a powerful perturbation method, originally developed by

Zwanzig to describe an irreversible thermodynamic process. It is called a projection

operator technique[241[2 s] for the reasons that will be explained later. We give a 3
general formalism first, and then by identifying the corresponding quantities in

the dipole radiation process for an optical site embeded in a medium, an explicit 3
form for the lineshape function is obtained. Say that the total Hamiltonian of the

entire system is composed of the unperturbed H0 and the perturbation H'. The 3
unperturbed Hamiltonian is again composed of the Hamiltonian for the system and

the Hamiltonian for the bath. Let f(t) be an operator in Hilbert space, or a vector U
in a Liouville space. The Liouvillian is I

L= L 0 + L' = Los + L6 + L' (4.3.22)

The equation of motion for f(t) is simply given as

iaf(t) -= Lf(t) (4.3.23) 3
11i I
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U Suppose that there exists a projection operator P such that

_ f1 (t) = Pf(t), 2(t) = (1 - P)f(t) = Qf(t) (4.3.24)

with the initial conditions

A (0) = f(o), L(0) = 0 (4.3.25)

Breaking up the operator f in two parts with the given initial condition can be

understood in this way. When a projection operator is used, we have a 'relevant'

part and an 'irrelevant' part in mind. The relevant part pertains to the system of

Iinterest, while the irrelvant part refers to the remaining part. To calculate a specified

quantity of a system of interest we need information on the relevant part only. At

t = 0 the vector f contained all the informations on the system, and as time goes by

the information leaks and gets lost into the irrelevant part. Our goal is to get the

time evolution of the relevant part of the operator f(t) in terms of the interaction

Hamiltonian by projecting out the relevant part, or by projecting away the irrelevant

part. Usually the relevant part will be the system and the irrelevant part will be the

bath. If we think of the density matrix as f, the projected part can be thought of as

the density matrix for the system with the bath in a thermal equilibrium, and the

unprojected part as the density matrix for the bath. But because of the interaction

between the system and the bath, the density matrix cannot be separated as a

direct product of each matrix. The time evolution of the density matrix for the

system can be obtained only by projecting the relevant part of the time dependent

total density matrix. Since the time dependence of the total density matix cannot

be obtained without resorting to a perturbation method, the basic idea behind the

projection technique is that the eqution of motion of the density matrix is written

for the relevant and the irrelevant part separately, and solve for the relevant part

by eliminating the irrelevant part but keeping the projection operator.

Ih ---(t) = PLf,(t) + PLf2 (t) (4.3.26)
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OA (t) - QLA1(t) + QLh2(t) (4.3.27)
at

Eq.(4.3.26) can be solved in a strightforward way, yielding I

f2(t) = exp(-iQLt/h)2(o) + dt'exp(-iQL(t - t')/h)( hW)

= fIdsexp(-ZiQLs/h)( -iQ )fl(i - s) (4.3.28) 3
where the initial condition f 2(0) = 0 is used. Substituting Eq.(4.3.28) back into

Eq.(4.3.26) gives the equation of motion for fi.

ih 9(t) = PLf ()+ PL dsexp(-iQLs/h)(-iL )fl(t - s)

= PLf(t) + jo dsK(s)fi(t - 3) (4.3.29) 3
where K(s) is defined as 3

k~~s) =-PL ex(-iQLs/ti)QL3

_ -PL'exp(-iQLs/h)QL' (4.3.30)

where the assumption that the projection operator commutes with the unperturbed

Liouvillian is used. In the freqency domain the relevant part of the operator f is I
given by a Fourier transformation.

wf,(w)- fi4(0) = PLfi(w) + K(w)fl(w) (4.3.31) I
with

K(w) = PL' 1 QL' (4.3.32) I

Now we can put the interaction Hamiltonian part into a function M,(w) called a

memory function.

wf (w) - if1 (0) = P(Lo + M,(w))fl(w) (4.3.33) 1
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with

Me(w) = L' + L' L' (4.3.34)
w - QL

In order to understand the idea behind the memory function Me(w), we study

Eq.(4.3.33) in a time domain. Making use of the relations in Eq.(4.3.13) and the

definition of a projection operator, P 2 = P, the relation for the projected part of

the operator f(w) in Eq.(4.3.33) can be rewritten as

I wf,(w) - ih1(O) = (L + PM,(w)P)f,(w) (4.3.35)

INoting that

I PM(w)P = Ipb))((1bIM,(w)Jpb))((bJ = Ipb))Trb{M(w)pb}((lbl

I -- lpb?)=M ( ))((bIl (4.3.36)

and taking a sum over the bath states, an equation for the system part of the

Ioperator f can be obtained. Simply taking an inner product of Eq.(4.3.35) with
~( ( 1 yields

y wf'(w) - if3 (O) = (L" + (M(w)))f,(w) (4.3.37)

where (Mc(w)) is a quantum average of memory function Mc(w) over the bath state,

that is,I i(M(w)) = Trb{Mc(w)pb} = ((lbtMc(w)pb))(4.3.38)

Solving Eq.(4.3.37) for f(w) gives

I(W) f 1 1 (4.3.39)u; - LO - (Mc(w)) ]()(..9

Transforming Eq.(4.3.37) back to the time domain yields the following equation of
motion for the operator f3(t).

A i &Of't )= Lof'(t) + j ds(Mi(s))f'(t -. 9) (4.3.40)
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This is a quantum mechanical equation of motion for the operator f' (t) pertaining 1
to the system. While the first term in the r.h.s. describes the unperturbed motion, 3
the second term describes the effect of stochastic noises from the bath to the system,

where the integration over time represents the memory effect of the bath, that is,

the time evolution of an operator in the system at time t depends not only on

the Hamiltonian of the system but also on the value of the operator at a previous

time through an interaction with the bath. The effect of the bath at a previous

time is still at work on the system. Actually the memory function itself is a time- 3
correlation function of stochastic forces acting on the system. Short memory means

that the temporal overlap of two random noises are small. In a Markovian process 1

the stochastic forces are delta-function correlated, or

(Mc(t - t')) = -i27rAS(t - t') (4.3.41) I
and in a frequency domain the memory function is independent of frequency, I

(Mc(w)) = -iA (4.3.42) I
where A is a complex quantity. The freqency dependence of the operator f'(w) is

simply obtained from Eq.(4.3.39).

f'(W) =i 1 fa(0) (4.3.43)

In a real physical problem the memory function is approximated by truncating up 1
to the first nonvanishing order in the interaction Hamiltonian, and the dependence

of the response function of the system on the bath can be seen explicitly. The 3
memory function defined in Eq.(4.3.34) satisfies a Lippman-Schwinger type relation

in a Liouville space. a I

Mc(w) = L' + L' 1 LO(1 - P)Mc(w) (4.3.44)3
wLo
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Eq.(4.3.33) with an iterative relation Eq.(4.3.44) for a memory function Mc(W) gives

the Fourier transformed relevant part of an operator in general. The Lippmaa-

Schwinger relation allows us a perturbation expansion in the interaction Hamilto-

nian. In an application of the above results to a particular irreversible thermody-

namic process in a real system, all we need to do is to find a proper projection

operator such that the assumptions made to derive Eq.(4.3.33) are satisfied. The

assumptions are the initial condition for the operator f and the commutatibility of

the projection operator with the unperturbed Liouvillian.

Now going back to the lineshape function we find that the we can make an

identification of D'(w) and D'(t = 0) = pz ° as fi(w) and fP(t = 0) respectively.

The part of the operator D(w) relevant to the system is obtained from Eq.(4.3.39)

asas(w =i 1 p*pb * (4.3.45)

D'(w) w - LO- (Mc(w)) s 3

Substituting the above expression into Eq.(4.3.8) yields the line shape function F(w)

in the final form as

F(w) =~ImTr-'x" 1 X1
u; Ls(Mc(w-)Px

IM w( -' I- PXM(..6

11
- 1I(z 1

-- Ir w - ( ( (p'°)>) (4.3.46)

4.4 Perturbation Expansion in the Memory function

A comparison of Eq.(4.3.46) with the lineshape function Eq.(4.2.17) defined

for an unperturbed system shows that the effect of stochastic interactions with the

bath are taken into account implicitly in the memory function (M(w)). At t = 0

the system and the bath are viewed to be independent of each other, (Eq.(4.3.16)),

and at a later time the time evolution' of the dipole-dipole correlation function is

described by the Heisenberg equation of motion with the full Hamiltonian including

the interaction (Eq.(4.3.5)). The final form of the lineshape function (Eq.(4.3.46))
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can be interpreted as a Fourier transform of the Heisenberg equation of motion

(Eq.(4.3.5)) where the effect of the bath is put into a memory function. Now we

examine how the presence of the memory function (Me(w)) changes the lineshape

function of the system. The trivial case is when (M,(w)) vanishes. Without any

interaction with the other excitations the lineshape function reduces to Eq.(4.2.17),

which means that the optical linewidth is determined only by a natural radiative

decay time explained in Sec.4.2.

For a nontrivial case of nonvanishing (Me(w)), we need to calculate the inner 3
product of Eq.(4.3.46) in a Liouville space.

F(w) = -Irn((z w L 0 (M(w))
r w - L O' - (Mr(w))) )

= -l-fin ((~if)(if - Lg- (.M'(w)) Iif))((ifI('z'))) (4.4.1)

i' f',ifi

Since the bath states are already summed, we find that LO is diagonal operator in

the Liouville space of the system. In general (M,(w)) is nondiagonal, and there 3
is a probability for a crossing between the different bases of the Liouville space of

the system. If the off-diagonal components of (Me(w)) is much smaller than the

transition energy differences, the memory function can be assumed to be diagonal.

Physically this corresponds to the case where the optical transition energy levels of i

the system are well separated. Under this approximation, the lineshape function

reduces simply to i
1

F~w) -- '((i)(iP°)(iffr W - LO,- (MC(u)) ))

if

I - r 1 : 1 p ., _I,' _l 1M (,)!If

T if w -'wi - b(w) + i7(w)
,, (w)(4.4.2)

71 Z izf j {w - wif ,) + ,(,.w) 2  (4.4.2)
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where the real and imaginary part of the memory function is separated.

b(w) = Re(Mc(w))j,jf (4.4.3)

I Y(w) = -IM(MC(w))qii (4.4.4)

I We find an important result that the real and the imaginary part of the mem-

ory function (Mc(w))jf correspond to the peak shift and the linewidth of the line-

I shape function respectively. In a Markovian process (Me(w)) is independent of W

(Eq.(4.3.42)) and the lineshape function is a Lorentzian function. The Fourier trans-

Iform of the lineshape function F(w) is straightforward resulting in an exponential

decay behavior, as it should.

F(t) x e - ' e -i(w i - 6)t (4.4.5)

When a short memory approximation is made, which corresponds to a short cor-

relation time between stochastic noises, (M'f(w)) is a slowly varying function near

w = wif, and in a first order approximation the incident light freqeuncy depen-

dence of the memory function can be replaced with the atomic resonance frequency
i dependence.

(M (w)) ; (M (w 1i)) (4.4.6)

ITherefore we have a Lorentzian line shape under two assumptions. First the off-

diagonal elements of the memory function is assumed to be much smaller than the

Itransition energy differences. Second the bath is assumed to have a short memory,

or the duration of each collision to the system is much shorter than the collision

Itime between two separate collisions. These two assumptions hold in most of the

interesting cases, allowing us to approxiamte a homogeneous line shape a Lorentzian.

We find that the peak shift and the li'newidth depend on the resonance frequency

wi,, but for a Markovian process where the stochastic forces are delta-function

correlated the memeory function does not have frequency dependence leading to a
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frequency independent peak shift and the linewidth. The lineshape function which

is a macroscopic response function of a system upon an optical excitation reveals a

microscopic process of the system-bath interaction, and as will be seen later, this

lineshape function can be used as a probe for the charateristic physcal properties of

the bath itself because the memory function contains the interaction Hamiltonian

between the system and the bath and for the different baths the interactions are

different imparting a characteristic optical response to the system.

Now the problem of lineshape is reduced to finding the matrix element of the U
memory function.!

m = Re((ifI(M ( )) i,if if)) (4.4.7)

= -Im((ifI(MC(w))if,iflif)) (4.4.8) 1
with I

(M,(w)) = (L') + (L' L0 (1- P)M(w)) (4.4.9)

The memory function can be expanded in the interaction Hamiltonian up to the

first nonvanishing order, and the linewidth -y can be obtained up to the same order I
by calculating the matrix elements for the states involved in the optical transition.

However, the calculation of the matrix elements of a memory function in a Liouville

space is quite cumbersome, and it would be convenient if we could express all the

relations in a Hibert space which is more familiar to us. The problem comes down to

finding a relation in Hibert space equivalent to Eq.(4.4.9). Because of the projection

operator (1 - P), it is quite formidable to recast Eq.(4.4.9) into a Hilbert space

relation. When a memory function M(w) satisfying a Lippman-Schwinger relation

is introduced (See Appendix A6), it can be shown that there exists a corresponding

operator T(w) in a Hibert space. a I

(M(w)) = (L') + (L' 1 MM) (4.4.10)1
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The corresponding opertor called a transition operator satisfies the usual Lippman-

Schwinger relation.
1

T(w) = V + V T (4.4.11)w, - Ho

Me(w) is related to M(w) in the following way.

1
MC(w) = (1 + M(w)P )M(w) (4.4.12)

w -L

We find that Mc is equal to M in the lowest order approximation. Once we take

the approximation of the equality of Mc to M, the lineshape is determined by b

and -y given as

b = Re((ifI(M(ws))if,ii if)) (4.4.13)

7 = -Im((ifIM(w)if,if I if (4.4.14)

After a lengthy manipulation we can express the matrix elements of M(wi!) in

terms of the transition operator T.

( (if I (M(Wi! ))if,i li f) }

= {(iaT(wi + w,,)lia) - (fa iT(w +wQ)ifa)}

ac
+ 2ni p(c'I~i+wa)Iia)(f&'IT(w! +wa)IfQt)6(Ea E') (4.4.15)

Once we have an expression in Hilbert space it is easy to see the microscopic pro-

cesses responsible for the line broadening. In order to make the microscopic pro-

cesses more transparent we change Eq.(4.4.15) making use of an important property

of the transition operator. In a scattering theory an S matrix is defined to describe

the change in the wavefunttion of the particle due to a potential well. This scat-

tering matrix S should be unitary in order for the probability of the particle to be

conservered. The transition operator, T, is defined to be the part of the scattering

matrix deviating from the identity.

S = 1 - 2rib(E - Ho)T (4.4.16)
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The unitarity of the scattering matrix S provides an important relation for the

transition operator T.

StS = (1 + 2iri,(E - Ho)Tt)(1 - 21rib(E - Ho)T)

= 1 - 21ri6(E - Ho)(T - Tt) - {21rilb(E - Ho)} 2 T t T

= 1 (4.4.17)

or, 3
T - T t = -{2ri6(E - Ho)}TtT 

(4.4.18)

The above relation is called the optical theorem ;, scattering theory. In terms of I
matrix elements the optical theorem can be rewritten as

(ialT - Ttlia) = -27ri Z (i'°ITia 12(EiaD - E,.) (4.4.19)
i*,l II

With the above identity the linewidth -f is given in a final form as

7T 2=-1M((if iM)if,if 12f))

1 1 1__ 1

+ + "Tp-- (4.4.20)

where we introduced the decay times Ti, T11, and T."

1 2rE p I"i' a'T(wa + wi)Ia)12b(Ei + E,, - E - Ea) (4.4.21)
a a'',i

1 I 2rZ E p [(f'a'T(w. +w,)Ifca)126(Ef, + E,, - Ef - Eo) (4.4.22) 3
a a'f'$f

Tdbp = Z Ep,(ia'jT(w +w,)ia) - (f a'T(w(44.23)

T2 aa

There are two different contributions to the coherence decay for the atomic dipole I

moment. T1i and T11 represent the loss of coherence when the atom makes an
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inelastic transition out of the energy levels i and f through interactions with the

bath. The population decay of the atoms in an energy eigenstate c-uses the loss of

coherence just from the decrease of the number of the dipole moments contributing

to the dipole radiation. T ep h comes from processes in which the atomic dipole

moment returns to its original energy state i and f with its dephasing interrupted

I during interaction with the bath, and this is energetically elastic process for the

system. The homogeneous line width (FWHM) from a pure dephasixng process in a

Lorentzian line shape is denoted as Aw, given as

2Ae = 2x 1 (4.4.24)

3 or,

.= 21rPP JfpIJT(wf + wp)jfp) - (i~p' T(w. + w )Ip)J2 6(Ep' - Ep) (4.4.25)I p ,p

where If) and 1i) are the excited and ground states of the molecule, 1p) and Ip') are

the thermal bath states, pb is the occupation probability of bath state (p), and T

satisfies the Lippman-Schwinger equation[261

T(w) = V + V w HoT (4.4.26)

This relation shows that the dephasing rate is related to the anisotropy of the

transition matrix; that is, the difference between matrix elements of T in the ground

state and the excited states. Once the interaction Hamiltonian V is known, Aw can

be obtained to the same order by perturbative expansion of the Lippman-Schwinger

equation in V.

4.5 Line broadening in a crystal field

-- Now we apply the result for the temperature dependent optical dephasing

rate to a specific physical system. The first example will be th,. optical site em-

beded in a crystalline surrounding. The periodic lattice structure of the crystal
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can be represented as a phonon system and the interaction of the optical site with

the phonons broadens the optical absorption or emission line width. At a very

low temperature the line width is limited by the natural decay time, but for the

increased temperature the collision of the phonons with the optical site gives a tem-

perature dependent broadening. The Hamiltonian of an optically active molecule

in a crystalline field can be written as,

H = H1 + H12 (4.5.1)

H0 = co tq 0 + c, T! 41, + Ehw,(n + 2) (4.5.2)q

H 1 2 = 1T o(V(8)e + V( 2 )62) + 1I*,(V(1)e + V( 2 ) C) (4.5.3)

where H0 is the noninteracting Hamltonian of the molecule and the phonons; H1 2  3
is the interaction Hamiltonian coming from the coupling between the molecule and

the strain field of the lattice, and is expanded in terms of the strain field, C. When

the Lippman-Schwinger equation (Eq.(4.4.26)) is expanded, it can be written as

T(w)=V+V 1 V + (4.5.4)

-Ho wHo -Ho

Identifying the interaction Hamiltonian H 12 with V, matrix element in Eq.(4.4.25)

is

(ip'IT(wi + wp)1ip) = (,onqIT(wo + w.)'jonq) (4.5.5)

In the first order of the Lippman-Schwinger equation we have two terms contributing

to the matrix element, one linear in the starin field and the other quadratic in the I
strain field. The interaction Hamiltonian for the ground state, for example, gives

(ME + V( 2))I

= + (FjIVj2 )jko)(nq1E Inq) (4.5.6)

Using the second quantization, the strain field can be written in terms of the phonon

creation and annihilation operators. I

e~a q a, - a~ (4.5.7)3
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I &2 =i2 2 (aq, - a' )(aq - a,) (4.5.8)

We find that the linear process representing a single phonon creation or annihilation

does not conserve energy unless the optical states of the molecule change. That is,

the term linear in the strain field vanishes for a pure dephasing process where only

elastic scattering is involved. On the other hand, the interaction quadratic in the

strain field gives a Raman-like contribution in the line-broadening inside a lattice. In

another words, for a pure dephasing process we need to consider only a two-phonon

I process in the first order of the Lippman-Schwinger equation.

3 /, 0 e I1 nl )  (4.5.9)

3Another two-phonon process can take place when the Lippman-Schwinger equation

is expanded up to the second order in which case the linear strain field can appear

twice and gives a contribution which is second order in e.

(Ton l0 ) 0 E V , 0 ,>~nq (4.5.10)

A linear sum of two two-phonon processes (Eq.(4.5.9) and Eq.(4.5.10)) reminds

us of the photon scattering process in quantum electrodynamics, where the light

scattering off atom is expressed in Kramers-Heisenberg formula.[271 In the light

scattering, different regimes are classified to distinguish the characteristic scatter-

ing behavior. When the scattering is elastic and the photon energy is much smaller

than the optical transition energy of the atom, it is called Rayleigh scattering.

Since the phonon energy is much smaller than the optical transition energy of the

molecule (hw < < el -e o), two-phonon scattering is in a similar regime, hence, calledI@
a Rayleigh-like process. When two matrix elements (Eq.(4.5.9) and Eq.(4.5.10))

are compared, the term coming from the second order expansion of the Lippman-

Schwinger equation involves a square of coupling constant V( ') and is negligible
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compared to the term involving V ( 2  That is, the first nonvanishing main contri-

bution to the line broadening in the optical spectrum of a molecule embeded in a

crystalline field can be accounted for by calculating Eq.(4.5.9) only. Substituting

the strain field Eq.(4.5.8) into Eq.(4.5.9) yields the following nonvanishing terms,

Z (p'jata.i + aqa', Ip)
q'q

flqn_, I V n~pn,, nfp,flp,,. .,n, + 1,.~ f - 1., .. )
q'q

+,I- flq + 1(ni ,n,,,.. Inp,,np,, ,,fl - 1,...,n., + I,...)

=2Z1 Vfq+ 1 -,7 p',qpq, (4.5-11)
q'q

The above process can be represented in a space-time diagram shown in Figure(4.8). H
For acoustic phonons the Debye model can be adopted for the dispersion relation 3
of phonons. Then the density of phonon states is simply given by the phase space

factors. More explictly, the line width is

=T4r E 2NMwp,f 2Mwp, (n, ;np + 1)I('I'iV( 2)I'i) -(lio:l~~ (v - E1,;)

=T 2_4 /  -2(,V()q, ('~olVo(2)j4Po)l2
47r hp P3() 6E

Jd3 2 2M d"" I

47r h V(2 )  (oVo 2)lo)I2 I
× ''(* I I IIT ¢)2 e 1 eOw/TR  T

X (2 .) d3 q'(!)(n I -I bEq / - I " I

,*1 eDI zeZ

---T 7  
-d z6e) (4.5.12)fo' (ez - 1)2'  4

As expected, the temperature dependence of the line width is solely determined by

the density of states of phonons and Bose-Einstein statistics. There are abundant I
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experimental data confirming the above theoretical results. One well-known exper-

iment is the line width measurement of ruby.(28 ] The spectrum of Cr+S ion inside

sapphire crystal (A1203) suffers the shift and the broadening of R, and R 2 lines

Ias temperature is varied. The Debye temperature for sapphire is 760K, and the

line width changes from 1.8 x 10' 0 Hz to 4.6 x l012Hz for temperatures 20K to

300K. The experimental data agree very well with Eq.(4.5.12), and it is concluded

that the Raman processes are mainly responsible for the temperature dependence

of the optical spectrum and that the inelastic scattering of phonons gives almost

I zero contribution.

For optical phonons[29 ], the Einstein approximation can be taken because the

dispersion of the optical phonon can be neglected, and all the phonons have a single

fixed frequency wp. The line width coming from the optical phonon is simply

Aw oc (n)(n + I)
1 ehw p / kT

ewp/l kT - 1 e wp l kT - 1

Se - u;,,/kT (4.5.13)

where the last approximation holds for a low temperature, kT << hwop. This

process is called the Orbach process, and has been observed for a molecule in a

molecular crystal field where localized resonance states are supposed to exist.

4.6 TLS-Glass Model for Amorphous Systems

It is well-known that the thermal properties of amorphous insulating solids

are different from their cystalline conterparts at low temperature.[30I For a periodic,

ordered lattice structures, the Debye model gives a good explanation for the specific

heat behavior. In the Debye model the phonon density state is determined simply

from the phase space volume because a linear dispersion relation is assumed. A

3-dimensional lattice, therefore, has a density of state quadratic in T leading to the
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T' dependent contributions to the specific heat, while the electrons give a linear

T contribution. At low temperature the electrons are below Fermi surface giving 3
a negligible contribution to the specific heat, and the phonon contribution is dom-

inant. The long wavelength acoustic phonons that can be thermally excited even m

at low temperature, are responsible for the T' dependence of the specific heat. We

might expect that the behavior of specific heat at low temperature of amorphous, 3
disordered system will not be much different from the Debye prediction on the

grounds that the structural irregularities and random disorders in an amorphous I
system become less important as the phonon wavelength increases for a lowered

temperature. Most remarkably, experimental measurements at low temperature U
show that the specific heat of a fused silica (oxide glass) has a linear temperature

dependence, and is much larger than the value for a crystalline quartz. A system-

atic study has been performed by Zeller and Pohl[3 1][32] on the thermal properties

of various amorphous solids, leading to the conclusion that not only oxide glass

but also inorganic and organic polymer have a specific heat linear in T, that is,

this anomalous thermal behavior is a universal property of amorphous, disordered

random systems. Other physical properties of the amorphous systems have been m

studied including the thermal conductivity, the optical line width of an optical site,

the acoustic attenuation, and the dielectric constant variations. As shown in Table m

4.1 the temperature dependence of the important physical properties are distinctly

different for amorphous and crystalline systems. Several microscopic pictures have m

been proposed for the amorphous system to explain the experimental observations.

The most decisive experiment in determining the microscopic picture was the acous-

tic attenuation. [1 3 ] - [401 The experiments showed that the magnitudes of the thermal

conductivity in oxide glass can be deduced from the scattering of acoustic phonons,

and also that the acoustic attenuation saturates at a high intensity of acoustic m

wave. This implies that the Debye-like phonons do exist in oxide glass, and most

importantly, are scattered by the additional resonant excitations. These low energy m
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excitations also participate in the heat capacity of an amorphous, disordered ran-

I dom system. By assuming a large number density of these low excitations with a

constant density of states, Anderson et al.[41] - [42] explained the anomalous spe-

I cific heat behavior of glass. The experimental results of acoustic studies support

TLS-glass model proposed by Anderson et al. over some other models introduced

I to explain thermal behavior only.

Our main interest will be the optical line broadening mechanism of an optical

site surrounded by an amorphous medium. The presence of low excitation energy

3 TLS inside amorphous, glassy media changes the temperature dependence of the

optical line width drastically from that predicted by the Debye model presented

in Sec.4.5. Before we go into the line broadenig problem, we define a low excita-

tion energy TLS system and study the interaction of TLS with a resonant acoustic

phonons.[4 3 - [4 '1 TLS is defined to be a two-level system with a nonvanishing tun-

neling probability between two eigen states. This can be pictured as a double-well

potential as shown in Figure 4.9. The well-depth and the separation of two wells

determine the tunneling probability represented as an off-diagonal matrix in the

Hamiltonian. The noninteracting Hamiltonian of TLS can be written simply as,

I Ho 1(a W (4.6.1)

I where

W =- oe-  A- 2Vd 2  (4.6.2)

where W is the tunneling frequency, A the tunneling parameter, and A the energy

splitting between two wells. Refer to Figure(4.9) for a schematic diagram for TLS.

V is the barrier height between two wells, and ?hw 0 is the zero point energy. As we

see, W is a measure of the tunneling probability between two wells, and vanishes for

a double-well with a large separation and a large depth. In order to describe an in-

teraction with the phonons it's better to work in a new basis where the Hamiltonian
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of TLS is diagonalized. Defining I

sin 20 = W I cos 20= E = ,/A + W 2  (4.6.3)

and introducing an orthogonal matrix A,

(cos0 sin0) (4.6.4) 1A=sin09 - cos

the Hamiltonian and the wave function can be transformed into a diagonal form.

H' = AHA - i, = (4.6.5) 1
That is,

H'=E (1 01 Ea'- (4.6.6)

Tsin0 - P2 cos e)(4671
In a new basis TLS has a well-defined energy state. Now we consider the interaction

of TLS with phonons. At a low temperature the amorphous system can support a

long wavelength phonons which is simply an elastic wave in a continuous medium.

This long wavelength elastic wave gives rise a strain field introducing a deformation

in the double-well, and the deformation can be represented as an interaction between 3
TLS and phonons. The interaction is assumed to be diagonal in the original basis

of TLS without losing any generality. 1
H Hint- 0 _ ) (4.6.8) 1

In order to see the effect of phonons on TLS it is better to go to the new basis

where TLS is diagonalized. Transforming the interaction Hamiltonian, Hint, to a I
new basis , Isin2

Hit =AH,tA -1 = - 2 sin 2 8 - cos 20

=-Ycos20( 0  c +- sin 20  0 1

D B 1(4.6.9)
2 "aZe + 2
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where
D = ycos2 = - (4.6.10)

2 2
B W
2 -- ysin 28 =y" (4.6.11)

we find that the elastic wave in amorphous system can induce either a shift in

the TLS eigen energy, E, via D (diagonal coupling) or a transition between the

eigen states of TLS via B (off-diagonal coupling). Since the off-diagonal coupling

allows a transition between the eigen states of TLS, TLS in the amorphous system

at finite temperature keeps flip-flopping by emitting and absorbing the resonant

I energy phonons.[7' 1 This resonant excitation of TLS with an acoustic wave can

give all the Bloch-type resonant phenomena. In fact, the saturation in the acoutic

attenuation was the clue leading to the conclusion of the existence of TLS. Similar

to the photon echo in an optical Bloch system, phonon echo has been obeserved for

TLS in amorphous system reconfirming the microcsopic picture.

Now we calculate the TLS relaxation rate as a function of TLS parameters

and the temperature for later use. The one-phonon relaxation probability can be

obtained in a straightforward way from Fermi's golden rule.

=IH In g(E)Z(hw - E)
phonon pal., a 

(4.6.12)

The matrix element can be calculated using a second quantization form of a strain

field. (Eq.(4.5.7))

Bnph + Iea3 B CInph)

B 2

B kQ Vnph+ 1 (4.6.13)

Adopting Debye density of states for phonons, the phase factor is given as
V 2- W2& V_4lrE 2 E

41rk'dk - 47r() - = (dE (4.6.14)

(27r) 3  (27r) 3  c c (2ir)3 hfiTC
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or, the energy densty of states g(E) is I

V 4irE 2  (4.6.15) I
g(E) (21r) 3 hi3c3

And at temperature T the Bose-Einstein statistics gives

nph(E) = eE/kT - 1 (4.6.16)

Substituting Eq.(4.6.15) and Eq.(4.6.16) into Eq.(4.6.12) leads to the transition

probability

21r B) 2 kp(nh(E) V 4rE2

2 1 ) (n ph(E ) + 1) --
ItP - '' 2 ( 2 pw (2ir)3  h 3c

B)2  E3  1 + 1) I2 c52-7rpa(eE/h- 1 T(4.6.17)

Similarly, 3
B E3  1- )2 E / 1 (4.6.18)

W(V - 12' =(2 c527rph 4( eElkT -1

The relaxation rate of TLS is, then, given as

-r =W( -. ' ) + W(T' -, V
B2 E1 1

= E(- )2 _ 2 E34 coth(E/kT) (4.6.19)

w here ct= I a de i na e .2 1rph
, t designates the phonon mode (longitudinal and transverse), ca is the

appropriate sound velocity, and p is the mass density of glass. We find that the

relaxation rate of TLS depends on the temperature of the bulk amorphous medium,

and the relaxation rate of TLS becomes larger for an increased temperature.

4.7 Line Broadening in TLS Glass media

Figure(4.10) shows a schematic diagram for two classes of line broadenings.[461

Figure(4.10.a) is called a homogeneous line broadening, while Figure(4.10.b) is I
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called an inhomogeneous line broadening. Based on our linear and nonlinear op-

tical measurements, the linear absorption spectrum of a SINC thin fim is found

to actually consist of many Lorentzian homogeneous lines under a Gaussian enve-

lope. Similar behavior was found in independent optical hole burning and photon

echo studies of related amorphous structures. The Gaussian distribution is a conse-

I quence of the statistical distribution of resonance frequencies of the optical centers

due to a variation in local environment in glassy and amorphous matrices. Within

the inhomogeneous broadened Gaussian envelope are a series of narrow homoge-

neous broadened resonances where the characteristic temperature dependence of

the linewidth depends on the microscopic broadening mechanism. The lhnewidth

of the homogeneous broadening in amorphous media[47]-[ 6 11 can be accounted for

using the TLS(two level system)-glass models introduced by Anderson, Halperin,

and Varma which have been fairly successful in accounting for many of tbe phys-

ical properties (e.g. specific heat, thermal conductivity, ultrasonic absorption) of

disordered systems such as glasses and polymer-like matrices. The temperature de-

pendent optical dephasing rate can be expressed directly in terms of the transition

m matrix,

AW WpI(fp'IT(wf + wu)lfp) - (ip'lT(wi +wp)Iip)12 6(Ep, - Ep) (4.7.1)
I_ p',p

where If) and 1i) are the excited and ground states of the molecule, Ip) and Ip')

are the thermal bath states, Wv, is the occupation probability of state 1p), and T

satisfies the Lippman-Schwinger equation

T(w) = V+V w - T (4.7.2)

This relation shows that the dephasing rate is related to the anisotropy of the

transition matrx; that is, the difference between matrix elements of T in the ground

state and the excited states. Once the interaction Hamiltonian V is known, Aw

can be obtained to the same order by perturbative expansion of the Lippman-

Schwinger equation in V. The homogeneous line broadening of optical centers in
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polymeric matrices is another example of a physical property where TLS-glass model U
is adopted for disordered system. The amorphous material surrounding an optical

site can be considered as an ensemble of TLS flip-flopping between two eigenstates

as they emit or absorb acoustic phonons. The Hamiltonian of the thin film on a

substrate can be written as

H = Ho + H 12 + H2 3  (4.7.3) 1
Ho = co %FtTO + e,%, t, + -Eo + Ehwq(n. + ) (4.7.4)

HVOa1'OO+ 1 (4.7.5)

H23 = a " (4.7.6)

where H0 is the noninteracting Hamiltonian of the molecule (the difference -I - 60

corresponding to the Q-band absorption), the TLS, and the phonons; H 12 is the

electrostatic dipole interaction between the molecule and the TLS; and H23 is the

interaction between the TLS and the phonons, i.e., the strain field f is coupled 3
to the TLS. With the TLS and phonons as a thermal bath, for example, we can

write the phonon emission process as lip) = IFo Tnq), lipi) = I€o fq + 1), fP) =

I Ti Tnq), lfP') = 1I1 Inq + 1).

When the Lippman-Schwinger equation is expanded, it can be written as 3T1)V+ __ 1 1

T(w)-- V + V _ V+V V 1 V +-.. (4.7.7)
Lw - H0  w - H w -H 0

Now putting V equal to H 12 + H 23 , we get for a phonon emission process

(ip'JT(w, + wp)lip) I
=(*oInq+lIT(wo + wT + wu,,)I'o Tnq) (4.7.8)

The first order terms are identical for the ground state and the excited state since

only H23 is involved in the first order process, i.e.,

¢oF Inq +11(H,2 + H23)1'k0 T ng)

=('IoInq+lH231o40Tnq) (4.7.9) 1
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(1I1 Inq+1j(H2 + H 23 )1'1 Tnq)

=(Q1 I nq+11H23 Ih1 Tnq) (4.7.10)

3 The second order terms are as follows.

1
(%Po J0- V oVIoTnq)wo + wr + Wn .H

=(To I nq+1VIFo Tnq+l)

+(o'nq+1 1 1 (oi)(nq jnq)3 w + W-T + , -2Ho

1 12

+ (Fo nq +IIVITo ..nq)(To .lnq I +Ho (47o 1)nq)(PojnqjV'[o Tnq)

=O o I nq + lIH121TO Tngl nq + Wn.

Th1 (io T nq +1 caH23 IOe onq
(t o +eor + hv - (wo +rs + .,+7l)

d(PoIaga snq+12 '~ in Fgre ) an Fgre4.2 1 isrIpnsible f O pno

+(,~o n +ll~ al o *%)(;Oo + wTr + "-n ) (WO + W1, + Wq ) ( qJ"n i li o q )

T wil- 1 ) e (n s+ lefn q) + a po -m I )f'(nq + i l1 E rn q s

=- 1Vo-(- )f/" (,q +l1 JE nq) (4.7.11)
I The interaction Hamiltonians H12 and H23 do not commutate with each other;

I therefore, we have two terms in Eq.(4.7.11) with a different ordering of H12 and

H23. The second order process involving phonon emission can be represented as a

I diagram shown in Figure(4.11) and Figure(4.12). H12 is responsible for a flipping of

TLS, while H23 is responsible for a phonon emission. In Figure(4.11) H23 appears

first, and H 12 comes later, and the ordering is reversed in Figure(4.12). Both terms

contribute equally in the line broadening, and keeping up to the second order, we

I find that

(/p'IT(w + ,)jfp) - (ip'IT(w +T ,)Iip)

=(*I 'I nq+ IIT(wi + wr + w ,)lki T nq) - (To I nq + 1T(wo +W T + wn,)IPo nq)

I 1 - - )/" ----2(n, 11,In) (4.7.12)
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For a phonon emission process, the occupation probability Wp for the thermal bath

is simply given from the Boltzman distribution.

= exp(-E/2kT) exp(-E/2kT) (4.7.13)

exp(E/2kT) +exp(-E/2kT) 2cosh(E/2kT)

where E is the difference in the eigen energies of TLS. Substituting Eq.(4.7.12) and

Eq.(4.7.13) into Eq.(4.7.1), we get the homogeneous line broadening upon a resonant

phonon from TLS. Since TLS in an amorphous medium has its own characterist "  I
statistical distribution of double-well depths, widths, and transition probabilities,

we need to integrate over TLS states in order to get the homogeneous linewidth. As I
in Eq.(4.6.8), when the interaction of TLS with the optical sites and the acoustic

phonons are assumed to be diagonal in the original basis of TLS, the TLS flipping

process depends on B/2 or WIE, while TLS non-flipping process depends on 9/2

or AE. (Refer to Eq.(4.6.9)) In the second order process involving both the optical

sites and the acoustic phonons, Eq.(4.7.11) shows that H12 (or V±) flips TLS, and

H23 (or fz) does not flip TLS. For a particular TLS with the zero point energy wo,

tunneling parameter A, and the energy splitting A, the coupling constants of TLS

should be redefined to account for the differences in TLS. That is,

1,0 E _ 0- (4.7.14)

fP A f (4.7.15)

With the new coupling constants V and f, the homogeneous line broadening due

to an acoustic phonon emission is given by integrating over TLS states.

AWevisin- 27 Z dwo dA dAdf P(wo, A~,f)____I

1lhwo Ax :f[1 A-2 4

* [2 ti'- -?o-)] [ E P! (,. + 1lE!n,)Il

exp(-E/ 2 kT) bi(E - hwq) (4.7.16) I
2 cosh(E/2kT)
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where P(wo, A, A, f) is the probability distribution of TLS satisfyng the normaliza-

tion condition.T [ 7 3 1

SPkwo, A, Af)'.&odAdAdf = 1 (4.7.17)

I A similar expression for the transition matrix element can be obtained for a phonon
* absorption process.

(fp'"T(wf +wp)lfp) - (ip'IT(w, + wp)iip)

I - 1 2 (n, -1 (E)(4.7.18)

In the phonon absorption process TLS is in the lower eigen state in the beginning,

having a different weight factor of the probability for the thermal bath. That is,

Wp = W1,nq

exp(+E/2kT) exp(+E/2kT)
exp(E,/2kT) +exp(-E/2kT) = 2cosh(E/2kT) (47.19)

I The distribution function P(wo, A, A, f) in Eq.(4.7.17) is assumed constant

in the ranges of Ai, < A < A,.,, and 0 < A < A and to vanish outside these

I- ranges. Carrying out the A integration for TLS, and summing over 4Twhile assuming

the Debye dispersion relation, we find that

Aw(T) oc T 2  T (4.7.20)0 1 -- e - 2 z

The homogeneous linewidth of an optical site in an amorphous medium shows a

quadratic dependence at a low temperature, distinctly different from the T7 depen-

deace tor a crystalline medium. The homogeneous line width of an organic molecule

in a glassy matrix has been measured by optical hole burning and by photon echo

experiments. (s6l-([sl,(T3j It generally follows the power law

Aw(T) C T' +6  (0 < 6 < 1) (4.7.21)

with the exact value of b depending on the charateristics of TLS in the particular

glassy matrix. In fact, by assuming a non-trivial distribution of TLS, the experimen-

tal value of Aw(T) can be fit, which then allows us to understand the microscopic

structure of a glassy medium responsible for the homogeneous line broadening.
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Figure Captions; Chapter 4

Figure 4.1; Schematic Diagram of the Molecular Structure of Silicon- Naphthalo- I
cyanine with a Polymer Tail I
Figure 4.2; Schematic Diagram of the Molecular Structure of Silicon- Naphthalo-

cyanine

Figure 4.3; Linear Absorption Spectrum of Liquid Solution

Figure 4.4; Linear Absorption Spectra of Thin Films; Pure Dye (solid curve) and 3
Solid Solution (dashed curve)

Figure 4.5; Linear Absorption Spectrum of Pure Dye Thin Film at Various Tern- I
peratures (1)

Figure 4.6; Linear Absorption Spectrum of Pure Dye Thin Film at Various Tem- I
peratures (2)

Figure 4.7; Optical System in Interaction with a Thermal Bath

Figure 4.8; Phonon Scattering Process in Crystalline Media

Figure 4.9; Schematic Diagram of Two-Level-System (TLS)

Figure 4.10; Homogeneous and Inhomogeneous Broadening 5
Figure 4.11; Phonon Emission Process in Random Glass Media (I)

Figure 4.12; Phonon Emission Process in Random Glass Media (II) 3
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N COMPARISON between CRYSTAL and GLASS

Physical Progg CysalGls
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Linear Absorption Spectrum of Liquid Solution I
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CHAPTER5 

NONLINEAR OPTICAL EXCITATIONS: SATURABLE ABSORPTION I

Resonant nonlinear optical processes of an electronic system such as saturable I
absorption can be described by a Bloch susceptibility. A Bloch-type two level sys-

tem resonant with incident light shows characteristic dispersive and absorptive third

order nonlinear optical responses. While the real part of the Bloch susceptibility

accounts for the intensity dependent refractive index, the imaginary part is respon-

sible for saturable absorption. The saturation threshold power is directly related

to the resonant nonlinear susceptibility, n2 . The resonant n 2 has been discussed in

Sec.3.7 in connection with a Bloch susceptibility introduced in Chapter 3. 3
After reviewing the resonant nonlinear optical susceptibility briefly in Sec.5.1,

we shall discuss the dynamics of saturable absorption, in terms of a pair of rate 3
equations, one for the number of excited state molecules, and the other for the light

intensity. By introducing a normalized pulse shape function, the pair of equations

can be reduced to one rate equation for the pulse shape function, which can be

solved numerically. The results of our numerical calculations will be presented in

Sec.5.2.

According to the dynamical transmission results, the threshold power for

saturable absorption is related to the molecular absorption cross section and the 3
radiative decay time of the excited state. In large conjugated structures, a given

triplet state is quite close in energy to the corresponding singlet state, and there 3
occurs appreciable intersystem crossing affecting the effective decay time from the

first excited singlet state. The intersystem crossing rate is intimately related to spin-

orbit coupling because it involves a transition between different spin manifolds. The

intersystem crossing will be reviewed in' Sec.5.3 leading to the important conclusion

that the central atom determines the intersystem crossing rate for a two-dimensional

ir-electron system such as a phthalocyanine. I
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I
In Sec.5.4 we present the experimental measurements of the nonlinear optical

I properties of the SINC thin films. Since our main interest is the resonant behavior

within the Q-band located in the near IR, different types of coherent light sources

tunable in the near IR are fully described in Sec.5.4.1 along with the detection sys-

tem used in the experimental measurement. In any nonlinear optics measurement,

the light detectors should be carefully specified because the detector itself might

behave nonlinearly. The principal results of saturable absorption experiments are

presented in Sec.5.4.3. In order to fully characterize the resonant nonlinear op-

tical excitations in the Q-band,the dispersion of saturable absorption throughout

the Gaussian absorption band was measured. A Kramers-Kronig analysis is used to

obtain the real part of the intensity dependent refractive index, presented in Sec.5.5.

5.1 Saturable Absorption and Resonant Nonlinear Refractive Index

n2

Saturable absorption is a resonant nonlinear optical phenomenon in which

the absorption coefficient decreases for an increased incident light intensity. At a

low incident light intensity, the absorption coefficient of an optical system is related

to the imaginary part of the linear refractive index, which in turn is related to

the linear susceptibility of the system in an electromagnetic field.[IHI 1 According

to linear response theory, as shown in Cnapter 4, a Lorentzian susceptibility re-

sults when a stochastic force, either an electromagnetic fluctuation manifested as a

spontaneous decay, or a thermal bath responsible for a temperature dependent line

shape function, is approximated to be near Markovian, or has a short memory. A

Markovian stochastic force disturbs the time-correlation of dipole moments leading

to a finite relaxation time. But a basic underlying assumption of linear response

theory is that the interaction of the srstem with the external field is small, thus

allowing a perturbation expansion of the response function. In quantum mechanical

terms, once the interaction of the system with an external field is introduced in the

156



I

total Hamiltonian of the system, the wavefunction of the system can be divided into U
two parts: the unperturbed part from the system without the interaction and the

perturbed part caused by the interaction. When the time evolution of the system

interacting with a perturbing field is considered, the Hamiltonian operator describ-

ing a unitary transformation of the wavefunction of the system should be the total

Hamiltonian, which operates on the full wavefunction.

In linear response theory, the change in temporal evolution of the wavefunc-

tion is assumed to be the sum of the product of the unperturbed Hamiltonian and

the perturbed part of the wavefunction, and the product of the perturbing Hamil-

tonian and the unperturbed wavefunction. That is, the product of the perturbing I
Hamiltonian and the perturbed part of wavefunction is ignored.

ih 2"(t) = ih 0 (TOt)+ 6M+ (t))

=HP(t) = (Ho + H,)('Fo(t) + 6'I(t))

=HOTo(t) + HeoS(t) + Ha'I'0 (t) + Hab%'(t) (5.1.1) I
Or, 3

ihobI(t)

=Ho61(t) + H.Io(t) + H.6'I(t)

,Hob'(t) + H.%Po(t) (5.1.2) 3
When the perturbing field is very intense, or the interaction of the system 3

with the perturbing external field becomes comparable to the unperturbed Hamil-

tonian of the system, for example, through a resonant enhancement, the response

of the system becomes large and the approximation taken in linear response theory

is no longer valid. The perturbation ekpansion is not justified, and the optical sus- I
ceptibility cannot be obtained simply from the time-correlation function of dipole

moments. However, as discussed in Chapter 3, the resonant interaction of a system
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with an intense coherent optical field can be described in terms of a Bloch equation.

3 The Bloch susceptibility is intensity dependent, and for a light intensity above the

threshold critical intensity, which is related to the population and the phase decay

3times, the system exhibits a characteristic nonlinear response, saturable absorption

being one of them. As seen in Eq.(3.7.10), the threshold intensity is the same for

3 the real and the imaginary part of the suscpetibility, which allows us to determine

the intenisty dependent refractive index n2 . n2 is related to the real part of the

I-_ susceptibility from an experiment that measures the effect of the imaginary part of

the susceptibility.

Sometimes saturable absorption is described by rate equations for the dif-

3 ferences in the number of resonant atoms in the upper state (n2) and the lower

state(n1 ).

= dn2  - n (5.1.3)

d-- = +R(n2 - nj) + (5.1.4)

By subtracting Eq.(5.1.4) from Eq.(5.1.3), we find the rate equation for the popu-

lation, w,
dw w + I- - 2 Rw (5.1.5)

dt T1

It is easy to see that the above rate equation corresponds to the Bloch equation for

the population when the dephasing time T2 is assumed to be short. As can be seen

in Eq.(3.5.26)-(3.5.28), for a short 72, the polarization described by u and v in the

Bloch equations assumes a steady state value of u = 0 and v = PcT 2w for A = 0,

yielding a self-contained equation for the population w. Comparison of Eq.(5.1.5)

and Eq.(3.5.28) identifies the induced transition rate R as K%2T2 /2. In terms of

the threshold intensity, I., for a Bloch susceptibility introduced in Eq.(3.7.11), the

rate equation Eq.(5.1.5) can be rewtitden as follows.

-dw I W -W+1 (5.1.6)
dt T, , - Ti
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From saturable absorption measurements, we can estimate the nonlinear re-

fractive index n2. The nonlinear optical susceptibility X(w) for a Bloch type system

is given by

X(w) = ( ( + A + (5.1.7)

where a0 is the linear absorption coefficient, A is the atomic detuning, (w - Wa)T2,

and I, is the saturation intensity. The nonlinear refractive index n2 is the derivative

of the intensity dependent refractive index n with respect to the intensity I, so for

this model I
= 47r)2 X(3) = a0 A A_ _

3 no 4I (1 + A2)2) (5.1.8)

The maximum n2 occurs for an atomic detuning, A = I/v/3, and the corresponding

n2 is simply ±O.026Aa/I,. Once the saturable absorption threshold intensity is 3
measured, we can obtain the value of n2 in a straightforward way.

5.2 Dynamical Transmission

The pulse duration dependence of the saturable absorption threshold inten- I
sity is well explained in terms of a two-level molecular system interacting with

resonant incident light. 1ii - 12)

,9n(x, t) = I(x,t)o[rn(z,t) - (No - n(,t))] n(z,t) (5.2.1)

191(, t) = -I(z t)a [(No - r(z, t)) - n(z, t)] (5.2.2)i1~x

where No is the total number of molecules per unit volume, n(z, t) is the number

of molecules in the excited state at the depth z and time t, a is the absorption I
crosssection per molecule, and -r, is the radiative decay time of the molecular excited

state.

The above two equations can be reduced to one equation for the transmission

T(z, t). Taking the time derivative of Eq.(5.2.2),
021 19I(x,t)i~

- = I - (N o - 2n)a + 21(x, t) - a (5.2.3)
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Substituting Eq.(5.2.1) and Eq.(5.2.2) into Eq.(5.2.3) yields

-r i2 In1 I r, 891 1 i1nI
Noa, at9z + 2 c x V ar j0  

+ l =0 (5.2.4)

Integrating Eq.(5.2.4) in x, we get

-', 9 In I(x, t) o9 In1(0, t) 2 sr~ , t) 1 ,t)N 0o at 0t)+ 2 (~,t-t0 )
I N1o

+- (ln I(x, t) -In I(0, t)) + x =0 (5.2.5)
N0 ar

I Now let the incident pulse shape f(t) normalized by the intensity, i.e.

I(0,t) = Iof(t) (5.2.6)

As the light pulse passes through the absorbing molecule, the pulse shape expe-

riences distortion as well as attenuation. The change in the pulse shape can be

expressed by defining a transmission function T(z, t) at the depth z and at time t,

i.e.,

I(z,t) = Io f(t)T(x,t) (5.2.7)

Now the dynamic transmission can be written in terms of T(x, t),

i9 an T(,t) + I--lnT(z,t) = 2olIof(t)(I - T(x,t)) - Nox (5.2.8)
19t r , -r ,

I Noting that the transmission at low intensity is given as

TO = - = e - N oa  (5.2.9)
* '0

we get the final expression for the dynamical transmission.

8 IT(zt) + In T(z,t) = 2o'rjoof(t)(1 - T(,t)) + In To (5.2.10)

where I0 is the incident light intensity, To is the low intensity transmission, and

f(t) is the incident light pulse profile. For an incident light pulse with a temporal

shape of the following form (Figure 5.1),

f f(t) = - -Cos(-)]t (5.2.11)
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a numerical solution of Eq.(5.2.10) is obtained for various incident intensities, 1 o,

and pulse widths, -rp. The low intensity transmission, To, is taken as 10- 0,8 or e " .

The output temporal shape is shown for various pulse widths in Figure(5.2)-(5.12),

with the intensity /3 = I0cYr, varying over 1000, 500, 300, 100, 50, 30, 10, 5, 3, 1,

0.5, 0.3, 0.1. Each figure corresponds to a fixed pulse width with each intensity

maximum (top) and minimum (bottom).

Figure(5.13) shows the results of a numerical analysis of the dynamic trans-

mission equation describing an interaction of a two level system with the incident 3
resonant light for various pulse widths, where the estimated radiative lifetime of the

excited state is 1 ns. We find that the threshold power for saturable absorption de- I
creases for an increased pulse width. But this trend saturates as shown for the ratio

10 and 10'. This can be accounted for by considering the total number of photons

incident on a Bloch type system. For a light pulse with pulse width much shorter

than the excited state radiative decay time, what really counts is the total number

of incident photons because all the incoming photons can be stored in the excited

state. In the case of a long pulse with a pulse width longer than the radiative decay

time, the saturable absorption can be understood as a balanced state of absorption 3
and emission in a steady state, and, therefore, there is not much difference between

a long pulse and a very long pulse. The dynamical transmission behavior itself can 3
be used as an indirect way to estimate the radiative decay time. Once the threshold

intensities for two short pulses with different pulse widths are known, the ratio of

the experimental threshold intensities can be compared with the ratio obtained from

the numerical analysis result, which can be simply read off from Figure(5.13). As I
will be discussed in Sec.5.4.3, the estimated life time of the excited state obtained I
in this way is in a quite good agreement with the independent measurements of the

radiative decay life time for phthalocyanine molecules. 3

5.3 Intersystem Crossing N
161 3
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When the energy of the singlet and the triplet states are degenerate, the

I triplet state has a lower energy than the singlet state. This, of course, is the

Hund's rule, and the physical explanation is simple for a two-electron system. In

the triplet state, the spin-wavefunction is symmetric and the spatial wavefunction

is antisymmetric. In the relative coordinate the antisymmetry means that it has

odd parity under the inversion operation, i.e., F -- -F. Then the antisymmetric

wavefunction has node at the origin, or the wavefunction in the relative coordinate

Ivanishes near the origin. Equivalently, the wavefunction of each electron has the

least overlap, therefore the Coulomb repulsion is smaller and the total energy is

Ilower than the singlet state. This idea holds even for a many-electron system. In

most stable molecules the ground state is singlet and the lowest excited state is

triplet. (One well-known exceptional example is the oxygen molecule, which has

the triplet ground state.)

The energy states of molecule can be classified by the parity symmetry. States

with parity even under inversion are called g (gerade) states, while states with parity

odd under inversion are called u (ungerade) states. Both the singlet state and the

triplet state have a series of different spatial parities associated with them. In

general the ground state is singlet with g parity (So). Once the molecule is excited

Ito the first excited singlet state (S1 , this has u parity owing to the dipole selection

rule ), it can decay only to the singlet states with g parity through the dipole

radiation since the dipole interaction has no spin flop in it. But if there is spin-

orbit coupling present, this can give a first-order perturbative admixture of singlet

states to the triplet state allowing the dipole transition from the singlet u state to

I the triplet g state.

Let's consider the spin-orbit coupling in more detail.13 -V(2 °1 An electron with

spin 1/2 has the magnetic dipole morqent.

gle (5.3.1)

2Mc
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where g is the gyro-magnetic constant. The interaction Hamiiltonian is

H, J e l O x (• I
2 c

-2mc
2 (j x ) 2 m2c2,1 - 1 -
1,,, c ( l x e-' § = 1 ( ' V × -) • 0

2 m 2 c 2  
2m2c2

1 1av(_ 1 iav-._
(-Vx p- e S - -L eS

-2m 2 c2  ar 2 c? r r
=1L 0 § (5.3.2) 3

where the potential is assumed to be central, 3
V = Vk") (5.3.3) 1

.:=ez = -jeli

-VVV = = (5.3.4) 3
and I is defined as

1 ov(,.) (5.3.,,)
S(r)- 2m'c 2 r Or

For a multi-electron system we have a similar interaction Hamiltonian. I

Hi 1 J (V(ri) f\-.. ' -. r~f o *' (5.3.6)
2m 2 c2 . ri&i

with I
1 1 OV(r 1 ) (5.3.7)

2m2c2 r, 
3

In order to estimate the magnitude of the spin-orbit coupling, we note that the

radial wavefunction (r) has the form," I
Z 2 1 (5.3.8)
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Then the magnitude is given

1 -- 2(R(r)nil (r)IRr) ) = h R2 (r),z(,(r)r'dr (5.3.9)

I Noting

L ,'-3iR() = -3= Z 3 ao3 (n 3 (l + 1)(I + 2))-i (5.3.10)

e 2 h 2  Z 4

= - 2m2 c2 n3 (l + 1)(i + 1 )1 (5.3.11)

Therefore the magnitude of the spin-orbit coupling has Z4 dependence, i.e.,

x(HI)nl OC (i C Zx (5.3.12)

The coupling of the triplet state to the differnt singlet states is determined by the

I group properties of the angular wavefunctions. For a discussion of the selection rule

in the intersystem crossing for a multi-eiectron system, refer to Appendix A7.

In the absence of intersystem crossing (ISC), the spin singlet states and triplet

state are completely independent manifold of states where no overlap of wavefunc-

tion can occur. But a nonvanishing matrix element between singlet states and

triplet states through spin-orbit coupling means that there is another decay chan-

nel for an excited singlet state. (Figure 5.14) The decay rate from S to T1 is much

larger than the decay rate from T1 to So, the reason being that the ground state
"0 has no life-time line broadening while S1 and T1 are already broadened from a

finite life-time. Usually ISC between S and T1 affects the effective decay time of

the excited state S1. A large ISC corresponds to a short effect;ve life time, and a

I heavy atom substituted molecule shows a dramatic change in the radiatve decay

time. One well-known example is bis (4-dimethylaznino-dithiobenzil) nickel (BDN)

dye.: "K 22, When dissolved in 1-2-dichioro-ethane, the principal optical excitation

state (singlet SI) of BDN dye has a relatively long life time, which allows BDN

dye as a Q-swiching dye in Nd:YAG laser. However, in iodine-ethane solvent, ISC
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is enhanced by a heavy atom substitution effect, resulting in a short life time of I
Si state, which allows BDN dye as a mode-locking dye as well as Q-switching dye.

The phthalocyanine molecule is another example, where the central atom deter-

mines ISC rate. For a various phthalocyanines with different central atoms, refer to

Table5.1. Compared to BDN dye, the heavy atom substitution effect is smaller, but

still ISC allows one to control the effective radiative decay time and the saturation

threshold power. I
5.4 Saturable Absorption Experiments

5.4.1 Light Source and Detectors

(A) Stimulate-1 Raman Scattering Cell I
In order to study the saturable absorption property of SINC we need an in-

tense coherent monochromatic light source. Because the absorption peak positions

in the near IR, we need a tunable light source. For a pulsed laser we employed a

Raman cell pumped by a picosecond or a nanosecond Nd:YAG laser. Various wave- I
lengths available through stimulated Raman scattering from hydrogen molecules

and methane molecules are listed in Table5.2. For a pure SINC film with peak

maximum at 810 nm, the first anti-Stokes line 813 nm from a methane Raman

cell pumped with a fundamental Nd:YAG was used, while for a solid solution and

a liquid solution SINC the second Stokes line 770 nm from methane Raman cell

pumped with a SHG of Nd:YAG was close to the absorption maximum. At a 300

psi pressure of wethane gas in a 1 meter long 1 inch drixneter stainless steel Ranan

cell with 1 inch thick fused quartz windows at both ends, the needed Raman line

was easily available for 30 picosecond and 10 nanosecond Nd:YAG laser pumping.

The pump beam was gradually focused in the middle of Raman cell to increase the

interaction length for Raman conversion. U
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H A mode-locked and Q-switched Quantel YAG501 picosecond laser system

provides a typical pulse with energy of 30 mJ per pulse, bandwidth of 30 GHz,

and pulse width 30 ps. By varying the output resonant reflector (etalon) the pulse

width of YAG501 laser can be varied from 30 ps to 200 ps, and the laser bandwidth

is determined by the convolution of the uncertainty principle and the intrinsic gain

medium band width. With this picosecond pumping a Raman output with energy

of 200 u.J per pulse with the same bandwidth and a pulse width shortened by a

nonlinear Raman process by a factor of square root 2 was obtained at 813 nm, and

770 nm. The autocorrelation of the picosecond Raman output 813 nm was taken

I to make sure the picosecond pulse width. A nonlinear optical material transparent

at doubled Raman output was used, and a simple alkaline photo-cathode PMT was

used. The autocorrelation trace is shown in Figure(5.15), where one division in the

* horizontal scale corresponds to 30 picosecond.

For a nanosecond laser pulse, the Quanta-Ray DCR Nd:YAG laser was em-

ployed providing a Q-switched, 10 ns pulse with a typical energy of 100 mJ per pulse

and bandwidth of 30 GHz. The DCR laser is designed for an unstable resonator for

a maximum power out of the laser oscillator, hence, the laser in'ensity has a. large

fluctuation. The Raman conversion efficiency was lower for a nanosecond pulse

I giving a typical output of 20J at 813 nm.

The Raman line used in the experiment was singled out by an interference

filter commercially available. Figure(5.16) shows the transmission spectrum of the

I spike filter from Ealing Optics (35-4407) at normal incidence. The peak transmission

position can be continuously varied by tilting the interference filter, and for 770 nm

Raman line selection we used the same filter just by tilting slightly.

770 nm and 813 nm is near IR, and human eye loses senitivity there. For

U the beam alignment purpose RCA CCXV camera (120 VAC, 60 HZ, TC 1500) was

employed because the silicon detector inside the camera has the spectral senitivity

far down near 1 p m. Sometimes a fluorescent paint (Flurescent Poster Color, 520-
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Orange, Liquitex) on a paper can be used to find infrared light. m

(B) CW Dye Laser 3
Although a methane Raman cell is appropriate for the saturable absorption

study near absorption peak, it doesn't provide a continuously tunable wavelength

for the study of the frequency dependent saturable absorption. We employed a

C.W. ring dye laser for a tunable light source. Spectra-Physics 380B Ring Dye laser

provided a stable monochromatic frequency between 790nm to 860 nm when LDS

821 (another name; Styryl 9) dye was used. The molecular weight of LDS 821 dye is

515.1, and the concentration of dye for Ar + pumping is 920 mg/liter in the solvent

of 150 ml prophylene carbonate and 850 ml ethylene glycole, which correponds to

1.8x10- 3 mole/liter. When pumped with an 8.0 Watt of Ar + laser, LDS 821 dye m

operated Ring dye laser gave nearly 200 mW output.

An acousto-optic modulator (AOM) driven by an AM-FM modulator can

deflect the C.W. beam providing micosecond pulses. [23][241 Refer to Figure(5.17). m

The deflected laser beam after AOM crystal is upshifted or down shifted in the

frequency. By AM (amplitude modulation) the intensity of the deflected light is

modulated, and by FM (frequency modulation) the frequency of the laser beam is

shifted by the driving frequency. Acousto-optical modulator from NRC is AOM

tellurium dioxide (TeO 2 ) crystal (N23080) and the driver for that is model N21080-

ISAS. The driving frequency is 80 ± 5MHz.

In the AOM the diffracted angle depends on the acousto-optical properties

of crystal, which is given as follows, m

0B = sin - 1  = sin-1 2nv 

where A=v/f is the spacing between nodes of a standing sound wave inside AOM

crystal, n is the refractive index of the medium, v is the phase velocity of sound, and m

f is the driving sound frequency. The diffraction efficiency depends on the material

parameters, and TeO 2 is found to have the largest figure of merit. U
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I A function generator (Wavetek model 275, 12 MHz, programable arbitrary/

function generator) was used to provide a triangular wave form to the AOM driver

after the negative part of triagular wave was filtered by a Shottky n+-n diode (HP

5082-2835).

(C) Light Detectors[211

In Figure(5.18) is shown the circuit diagram of photodiode and a schematic

sketch of a diffusor box used in a saturable absorption experiment. Usually a stimu-

lated Raman scattering output from a Raman cell has an appreciable fluctuation in

the beam direction. A non-uniformity in the photo response along the photodiode

surface itself can give an artifact signal shown up as a nonlinear optical response of

the sample. In order to get rid of this problem, we made a diffusor box such that

the laser beam does not hit the photodiode directly. Once the laser beam is scat-

tered by the beam blocker, it bounces off the inside wall of magnesium (Mg) coated

U box and only a small fraction of the incident power hits the photodiode. During

bouncing off the inside wall, the light beam loses its information on the original

incident beam direction. With this design the fluctuation in a signal caused by the

fluctuation in the beam direction was reduced dramatically, allowing an intensity

measurement insensitive to the beam direction fluctuation. The signal level after

a diffusor box is too low to be integrated and read in a CAMAC charge integra-

tor. A high bandwidth preamplifier was designed to amplify the signal from the

photodiode. Circuit diagram for the pream.lifier is shown in Figure(5.19).

A typical PIN photodiode circuits are shown in Figure(5.20) for a negative

polarity and in Figure(5.21) for a positive polarity. A silicon photo diode junc-

tion (typical active area of 0.5 mm 2 ) has a quantum efficiency of 70% (0.7 dec-

tron/photon) at 810 nm, which corresponds to the sensitivity of 0.7e/1.5 eV ; 0.5

A/W. The quantum efficiency can be used as a reference for the estimate in the

power measurement of a laser light. For example, I Volt signal output at 50 fl load
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resistor with a FWHM of I ns corresponds to 20 mA +0.5 A/W x 1 ns = 4x 1011

Joule. The corresponding energy density will be 4x 10" Joule/0.5 mm2 - 8 x

10 - 1 Joule/cm 2.

When another calibrated power meter is available such as Coherent power

meter model 212, a particular photo diode can be calibrated. Given a C.W. light

source such as HeNe laser, an average C.W. power can be read from a simple digital

voltmeter (for example, Fluke multimeter, which has an input resistance 10 MS1 )

connected to a parallel load resistor for a photo diode. For example, I Volt reading I
at Fluke meter across 1 M11 load resistor gives a photo current of 1.0 V / 0.9 MfZ

= 1.1 pA. (Note that the voltage ( - 1 V) should be much smaller than the bias I
voltage ( -.z 20 V) ) At HeNe frequency, a quantum efficiency 70 % corresponds to

0.37 A/W. Therefore 1.0 V reading at a Fluke meter corresponds to 1.1 pA + 0.37

A/W - 3 pW. Accounting for the beam size of HeNe ( say 0.5 cm 2 ) and the photo

diode active area ( 0.5 mm2 ), the C.W. power of HeNe measured by a photo diode

will be 3pW x 0.5 cm 2 + 0.5 mm 2 = 300 pW. This value can be compared with a

value measured by a calibrated power meter, giving us the calibration for the power

measurement at a pulsed laser experiment.

The resistor value at the bias voltage is determined by the current limit

for the photodiode. For example, with a 20 V bias voltage and 10 kfl resistor the I
maximum current allowed is 2 mA in CW operartion, and the maximum dissipation

CW power allowed is 40 mW. For a typical 10 nsec laser pulse with a 10 Hz repetition

rate, the maximum of 4 mJ/10 nsec peak power, or order of 10' V can appear in

a 50fA load resistor. For a very weak light with a photo current on the order of

nA,, a large impedence load resistor (1Mfl) is required to get an observable signal

on a scope. In a short pulse experiment where time response of each pulse is

monitored, the load resistor shoud be 50f0 to get rid of any ringing coming from

an impedence mismatching. Some electrical dividers for 50f0 impedence cable are

shown in Figure(5.22) (5.23). I
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In a pulsed operation of a PIN photodiode, we need a quick response of the

detector. The capacitor works as a temporary battery to follow a surge in the

current drawn by the photodioide upon the incident photons. The magnitude of a

capacitor is chosen such that the relaxtion time for the RC circuit (load resistor 50

11 and the capacitor connected serially to the load resistor) should be longer than

3 the pulse width. A typical RC relaxtion time is 50 Q xl0nF = 500 nsec, allowing the

circuit shown in Figure(5.20) (5.21) good for a picosecond pulse experiment. Note

that it is better to use a high-voltage rating capacitor (for example, 5nF of 0.005P,

1 kV, Z5U ) to prevent the capacitance from changing upon a large current drawing

l for a short time, which results in ringing. It is also important to use a BNC cable

along the signal path (RG 174) and to insulate photo diode and BNC connector

(UG-657, or RG-58 A/U, RG-58 C/U, 5010 cable) for signal from the housing box.

A PIN photodiode can be used with a zero bias voltage, in which case there

is no dark current, allowing a high sensitivity. Once the right load resistor is used,

it can measure a signal as small as the dark current. But in the absence of a

bias voltage the response time is very slow, on the order of 10p.sec. A no-bias-

voltage configuration is ideal for monitoring a weak CW power, and the circuitary

is basically th s;ame as that of a solar cell. In fact a commercial Coherent pwer

1 meter (model 212) makes use of a no-bias-voltage configuration.

When a higher gain is needed without complicating circuitary, another type

of photo diode is available. An avalanche photo diode has a gain of order of 200,

compared to a regular PIN photodiode which has no gain. It can be operated in

either a normal linear reverse biasing mode (Vrevere<Vbeak doun(;: 240 V) )

I or Geiger mode (Ve,,e,.o>Vbreik down). A typical circuit diagram is shown in

Figure(5.24). The resistor value is determined from the maximum C.W. current

l rating, which is 200pA typically. In A 50 12 scope, the maximum size of signal is

only 10 mV, which means it needs a voltage amplifier.

l For a detection of a very weak optical signal, it is necessary to use a photo
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multiplier tube (PMT). The quantum efficiency of a photo cathode for a PMT is U
much lower compared to that of a PIN photodiode. Usually it peaks near UV

(400 nm), differently from photodiode. But the photocurrent is amplified with a

gain of order of 105 at dynode stages. There are different kinds of materials for

photocathodes, and the right one should be chosen depending on the individual

applications. S1 photocathode[211-[291 has a nonvanishing quantum efficiency (less

than 0.1 %) even down to 1.2 om, and is useful for an infrared applications. It is

mainly composed of overlayer of Cs (cesium) on silver and oxigen. Even if Cs has

the photoelectric response only up to 800nm, a surface enhancement[30I due to silver

particle makes S1 photocathode sensitive down to 1.2;Lm. GaAs (Cs) semiconduc-

tor photocathode (for example, RCA C31034 series) has a rather broad spectral

response (185 nm to 930nm), and is a popular PMT photo cathode. However, one I
disadvantage of a semiconductor photocathode is that the qunatum efficiency is

highly sensitive to temperature changes, and a rather large dark current should be

decreased by cooling the PMT housing. When a relatively large current is drawn

from dynode stages, it is important to separate dynode resistors from the photo-

cathode to prevent a temperature rise.

When a large dynamical range of light intensity is covered by a PMT, the

linearity of anode current (Ip) and the divider current (Ib) should be checked care-

fully. In Figure(5.25) is shown a typical voltage divider circuit for a D.C. and

pulsed operation of PMT. In a D.C. operation the capacitor (C, and C2 ) should

be removed. Anode ground configuration eliminates the potential difference be-

tween the external circuit and the anode, and allows the use of the load resistor

as a current-to-voltage converter. lp is the anode current, while Ib is the divider

current. In a normal operation of PMT, Ip is much smaller than Ib. At the bottom

of Figure(5.25) is shown a linearity curve for the ratio of anode current to divider

current versus the photon flux. In a region A, it is linear, and PMT output voltage

appearing across the load resistor RL is linearly proportional to the incident light I
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U intensity, because the anode current Ip is negligible compared to the divider current

Ib. For a higer light intensity (region B), Ip increases and becomes nonnegligible

compared to Ib. Hence, the voltage between the last dynode and the anode de-

termined by the current 16 - p decreases, resulting in a higher H.V. distribution

among the lower dynodes. This shows up as an apparent increase in the PMT gain,

yielding a nonlinear current amplification. When the light intensity is further in-

creased (region C), the voltage across the last dynode and the anode is almost zero

because i - Ip is almost vanishing. The electron collection efficiency of the anode

is saturated, and the current is lower than it should be. In order to maintain the

Ioperation in region A, the maximum practical anode current, p, is less than 1/20

of the divider current, l&, where the divider current is simply determined by the

magnitude of the total serial divider resistances. A typical total value of resistor is

500 kfl at a 10 stages dynode. The corresponding divider current is 200 pA, and

the maximum allowed anode current will be 10 AA. A typical maximum rating for

U the anode current is 1jA, still one ord of magnitude below the maximum allowed

current. When a higher anode current is needed, one can increase the divider cur-

rent by reducing the divider resitor. But in this case care should be taken to get

rid of the heat generated from the power dissipation in divider circuit, since the

increased temperature increases the dark current of PMT. In a pulsed operation, a

capacitor should be connected at the last couple of dynode stages to provide current

surge at a short time period. A typical PMT circuit is designed for a scintillation

counting detector, in which case the pulse width is order of Usec with a very low

I duty cycle. The maximum current that can be drawn from the capacitor is of the

order of CV/100. For example, the capacitance of 0.021iF for C1 at a 100 V last

stage voltage can allow upto 0.02 /Coulomb of electrical charge.

- 5.4.2 Experimental Layout '

Saturable absorption behavior of individual ir-electron optical excitations
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within the Q-band of the thin films was investigated as a function of the pulse I
duration and wavelength of the incident beam. The experimental layout for sat-

urable absorption measurement of SINC thin film is shown in Figure(5.26). Either

the fundamental or the SHG line of a Nd:YAG (either nanosecond or picosecond)

pumped methane Raman cell was used to produce Raman lines near absorption

peak maxima (813 nm for pure dye and 770 nm for solid solution). Polarization

of the pump beam was controlled by a half-wavelength wave plate to give an s-

polarization configuration. In s-polarization the electric field is perpendicular to

the optical plane at the pellicle beam splitters (Ealing Optics 22-8916), and no

Brewster angle exists at the beam splitters, giving a much less scattering in the

beam direction after reflection off the beam splitter.

A pellicle beam splitter is preferred to a glass slide beam splitter because 1
the interference between reflections from the front and the back surfaces of a thin

pellicle beam splitter (thickness of 81rm) is widely spaced. In Figure(5.27) is shown

a transmission spectrum measured at a spectrophotometer. The inteference pattern

is clearly visible, and the thickness of pellicle beam splitter can be readily read off

from this interference pattern. One thing that we have to be careful in using the 3
pellicle beam splitter is that it is birefringent in general, and it is necessary to orient

such that the optical axis of the beam splitter is along the beam polarization.

The light intensity is varied by rotating a variable neutral density filter, and

also by moving in and out of the focus of the focused beam inside a pair of positive I
lens. In this way a large dynamical range of light intensity could be covered. At a

fixed position of beam waist, the intensity was varied by a variable neutral density

filter, and the reversibility of saturable absorption was checked carefully. A CAMAC

charge integrator (LeCroy 2249W ADC) with a CAMAC controller (KineticSystems

3912 Unibus Crate Controller) in a QAMAC crate (KineticSystems 1510 Power 3
Crate Unit) was connected to a PDP-1123 microcomputer to get a digitized signal.

Part of a fundamental beam was fed into a discriminator (LeCroy Model 121) to
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generate a gate pulse for the charge integrator. The reference and the sample

analog signal from the respective photodiode/preamplifier were integrated over the

gate pulse width (, 40 ns), and were stored in the microcomputer. The ratio was

taken and plotted.

The laser power was measured by a Scientech power energy meter (model

362), and also was checked with a power neter made of 4 thermocouples (Fig-

ure(5.28))I
5.4.3 Measurement and Analysis

NFigure(5.29) shows the incident light intensity dependence of the absorption

3 coefficient aL in pure dye film for 30 ps (circles, pure SINC dye; triangles, SINC

solid-solution) and 10 ns (squares, pure SINC dye) pulses, respectively. The change

in the absorption was reproducible through many cycles of increased and decreased

incident light intensity. Data points for 10 ns are more scattered owing simply to

power fluctuations in Nd:YAG pump laser. Here if the light intensity was increased

more than the maximum of the data points, i.e. 30 MW/cm2 for 30 ps pulses and

200kW/cm' for 10 ns pulses, an irreversible change was observed in the film, which is

apparently from the mass transportation of the dye film along the substrate surface.

I When compared with a pure dye film, we can see that the solid solution thin film

shows exactly the same saturable absorption behavior, but no irreversible change

was observed upto the incident intensity of 4GW/cm 2 . Saturable absorption is also

studied -n a liquid solution sample. Figure(5.30) shows the saturable absorption

observed in a liquid solution for 30 ps pulse.

3 In Figures(5.29) and (5.30), the solid lines are least square fits to a Bloch-type

sat.urable absorption
i_ a0L

a(I)L - + / + aBL (5.4.2)

where I, is the threshold intensity for the saturation, aoL gives the low intensity

linear absorption, and aBL is the unsaturable background absorption. Importantly,
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aBL was found to be zero for both films. In case of the pure dye film, the threshold

intensities for saturation were 100MW/cm 2 and 440kW/cm 2 for 30ps and 10ns

pulses, respectively. The threshold intensity for 1Ons pulse is lower than that for

30ps pulse, but this trend saturates at or near the 10s scale. The difference in

the threshold intensities for saturation can be easily understood in the dynamical

transition analysis discussed in Sec.5.2. Recalling that the saturation intensity

I, can be obtained for a given pulse width -rp and excited state life time r, from a

numerical simulation of the dynamical transmission equation, the ratio of saturation

threshold for two given pulse widths can be used to determine the excited state

radiative decay time r, uniquely. Using 230 as the ratio of threshold intensities at 3
30 psec and 10 nsec as determined from our experiment, we find the exited state

life time to be 5 nsec, in good agreement with previous independent relaxation I
measurements on related structures, as discussed in Sec.4.1.

For the solid solution thin film, the threshold power for 30ps pulse was 100

MW/cm2 , which is the same value as that of the pure dye film. The fact that

the saturable absorption behavior is identical for both pure dye and solid solution

film can be accounted for by the absence of any positional, orientational and phase I
coherence between molecular sites in the thin film phase, and from this we can

conclude that the on-site If-electron excitations of the Q-band in individual molec- I
ular sites are responsible for the large resonant nonlinear optical response. A least

squares fitting for the liquid solution data gives the threshold power of 30MW/cm 2

for a 30 ps pulse, which is lower than the threshold power for thin films. There

may be couple of explanations for that. First of all, the homogeneous broadening

mechanism in a liquid solution sample is different from that in a thin film, and the

laser light with a given bandwidth might work more efficiently for a kiqiud solution.

Another possibility might be that the offective radiative decay time might be longer I
for a liquid solution sample, reducing the threshold power for saturation. At any

rate the data shows that there is a zero unsaturable background absorption in a liq- U
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uid solution, which reconfirms our understanding of the optical excitation in SINC

molecule as an on-site ir-electron excitation at the individual molecule.

Once the saturation threshold intensity is measured, the nonlinear refractive

3 index n2 can be obtained in a straighforward way by substituting all of the material

parameters in the expression for n2, Eq.(5.1.8). For a SING pure dye thin fim, the

linear absorption coefficient, ao, is -105 cm- at A- 810 nm. For a C.W. saturation

intensity, we can interpolate from nanosecond data as 400 kW/cm2 . From these

I experimetal values, we obtain a value of n2 for the pure SINC dye film of I x 10'

cm 2/kW.

5.5 Dispersion of Saturable Absorption

To fully characterize the nonlinear absorption properties of the thin film,

I we measured the dispersion of the Q-band saturable absorption. A tunable (790-

860 nm) 10 its pulse was obtained by chopping an Ar + pumped cw ring dye laser

output (LDS 821 dye opreration) by an acousto-optic modulator. The first order

of deflected light can be tailor shaped by amplitude modulating the radiofrequency

acoustic wave at AOM driver. A relatively long (order of .tsec) pulse was readily

3 obtained by a function generator, and the beam was focused on the thin film sample.

Refer to Figure(5.31).I
The dispersion of the saturable absorption of the pure dye thin film for the

fixed incident intensity 80kW/cm2 is compared in Figure(5.32) with the linear ab-

sorption spectrum. It is clear that the change in the absorption is maximum on

resonance and is decreased in moving away from the peak. The dashed lines are

a least squares fit to a Gaussian envelope model for the linear absorption, and

I the dispersion was derived from the Iramers-Kronig relations. For a discussion of

Kramers-Kronig relation, refer to Appendix A8. The dotted lines are the fitted

curves for the saturable absorption and dispersion. We can see that the maximum
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change of refractive index as obtained from Eq.(5.1.8) occurs at A = 776 nm, and the U
maximum n 2 at A = 776 nm results from a linear superposition of the refractive in- g
dex change of each homogeneously broadened resonance with the inhomogeneously

broadened envelope.

In conclusion, we have demonstrated that a quasi-two dimensional ir-electron

structure such as SINC can be designed as wide area, spin coatable nonlinear op-

tical films and that these can be represented as a microscopic composite system of

molecular optical sites in a TLS-glass random medium. The resonant nonlinear op-

tical properties of homogeneously broadened lines contained in the inhomogeneously

broadened Gaussian envelope were directly investigated by standard saturable ab-

sorption measurements. These results showed for the SINC pure dye films that

saturable absorption occurs at the peak maximum of the low frequency Q-band I
near 81Ontn with essentially zero unsaturable absorption background and that on-

site ir-electron excitations of the Q-band in individual molecular sites are responsible

for the large resonant nonlinear optical response nz of I x 10 - cm 2 /kW at 810nm.

II
U

I
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Figure Captions; Chapter 5

Figure 5.1; Input Pulse Shape for a Numerical Analysis of Dynamical Transmission

Figure 5.2; Output Pulse Shape for r = 10'
Figure 5.3; Output Pulse Shape for r = 10'
Figure 5.4; Output Pulse Shape for r = 10'

Figure 5.5; Output Pulse Shape for r = 10

Figure 5.6; Output Pulse Shape for r = 3.0
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Figure 5.13; Numerical Analysis of a Dynamical Transmission
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Figure 5.28; Thermocouple Circuit i
Figure 5.29; Saturable Absorption Data for Thin Film Sample
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Various Phthalocyanlnes

UChemical Name Molecular Weight

Free Base Phthalocyanine H2PC 514.55

UCobalt Phthalocyanine COPO 571.47

Iron Phthailocyanine FePO 568.38

Nickel Phthalocyanine NiPC 571.24

Vanadyl Phthalocyanine VOPOI 579.48

IZinc Phthalocyanine ZnPC 577.91

Silicon NaPhthalocyanine SINC 1546

Vanady' 6-Petra-T-Butyl VONOINaPhthalocyanine 1004.141

Table 5.1
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RAMAN LINESI

Hydrogen Molecule; H2

Raman Shift; vibrational 4155 cm-1

Pumping; Nd :YAG fundamental 1 064nm
+2; 565nm
+1; 738 nm
-1; 1.91 gm

Pumping; Nd:YAG SHG 532nm
+2; 369nm3
+1; Q36nm
-1; 683nm

Methae C3
Raman Shift; vibrational 291 6cm-1

Pumping; Nd:YAG fundamental 1064nm3
+1; 813 nm
-1; 1.54g~m3

Pumping; Nd:VAG SHG 532nm
+1; 460nmI
-1; 629nm
-2; 770nm3

Tbe5.2I
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Output Pulse Shape for r =10
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Output Pulse Shape for r =0.03I
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Output Pulse Shape for r =0.01
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Output Pulse Shape for r =0.001
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I Numerical Analysis of a Dynamical Transmission
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I Auto-Correlation Measurement of a Raman Output
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Transmission Spectrum for the 810 nm Spike Filter I
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I Charge Amplifier
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MRD 510 PHOTO-DIODE;
* Positive Polarity
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Electrical Signal Splitter
for 50 Ohm Cable
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RCA Silicon Avalanche Photodlode; C30902 E
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PMT Voltage Divider Circuit
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Experimental Layout for Saturable Absorption
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U Transmission Spectrum of Pellicle Beam Splitter
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Thermocouple CircuitI
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I Saturable Absorption Data for Thin Film Sample
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Saturable Absorption Data for Liquid Sample3
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Experimental Layout for Dispersion of Saturable Absorption
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Dispersion of Saturable AbsorptionI
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1 CHAPTER 6

I ABSORPTIVE OPTICAL BISTABILITY

I The interpretation of O.B. as a nonequilibrium first order phase transition

was obtained from a quantum statistical description of the electric field and micro-

scopic atoms as shown in Chapter 2. The mathematical formulation for the most

general case (nonzero detuning of the cavity and the atomic resonance different

from the cavity mode) is quite complicated and does not provide a perspective in

understc-'4ing various kinds of O.B. phenomena. There are different ways to de-

scribe 0._o. in a steady state in a relatively phenomenological way. One way is to

I introduce the complex nonlinear eikonal appoximation, 1 - [31 which will not be dis-

cussed here. Another simple way to describe a steady state O.B. is that the electric

I field inside a F-P cavity forms a standing wave satisfying the appropriate boundary

conditions, and the average field intensity induces an intensity dependent refractive

I index change resulting in a nonlinear transmission function for F-P. ]- 8 ] The sec-

ond approach will be adopted here to derive the steady state equation describing

the most general case of O.B., allowing the analysis of the transmission function for

different initial conditions to classify the different regimes of O.B.. These analyses

are based on the steady state behavior of the system corresponding to the case v ,en

the relevant time scales of nonlinear Fabry-Perot interferometer are much shorter

than the light pulse duration.

I After the linear response of Fabry-Perot interferometer is briefly reviewed in

Sec.6.1, the steady state nonlinear response of an optical Bloch system contained in

a Fabry-Perot cavity is discussed in Sec.6.2. In the steady state case, the mathemat-

ical analysis allows us to classify O.B. as either dispersive or absorptive, depending

I upon the major contribution being the, real part or imaginary part of the nonlinear

susceptibility, respectively. Various regimes of O.B. are, then, discussed in Sec.6.3.

Transient behavior of O.B. is briefly discussed in Sec.6.4. In order to describe the
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transient response of a nonlinear F-P interferometer, which occurs when the rele- 3
vant time scales for the interferometer is much shorter than the light pulse width.

the problem of the time evolution of a nonequilibrium phase transitoii should be 3
addressed, but unfortunately it is quite formidable. In real experimental situations.

a transient thermodynamic instability, such as one that corresponds to tunneling

through a Ginzburg-Landau potential well, does not take place, hence, the transient I
behavior of optical bistability can be accounted for by nonlinear dynamical studies.

In Sec.6.5, the optical bistability experiments perfomed on SINC thin films 3
are presented. After the requirements on the light source and detectors for the

measurements of optical bistability are discussed, the observation of electronic ab- 3
sorptive optical bistability at nanosecond time scales is presented, and the results

are discussed based on the physical model for optical excitations in a random glassy

medium introduced in Chapter 4. Also presented are results in the long pulse

regime for thermal effects, which shows a hysteresis behavior completely differnt 3
from electronic, absorptive bistability.

6.1 Fabry-Perot Interferometer I
First we review a F-P interferometer.r9) - lL Let's consider a F-P cavity with

two piano-mirrors of reflectivity R as in Figure 6.1. The transmission function of a 3
F-P cavity can be obtained either by consideing multiple reflections of the electric

field at the cavity mirrors, or by simply solving a boundary value problem with U
Maxwell equations. We adopt the second approach because it gives a much better

physical picture when we consider a nonlinear optical response in the next section.

The two mirrors of the F-P c -ity provide a boundary condition for the electric

fields, and we can solve the the boundary value problem easily. At z = 0,

62(0) =v- R(0) - ./e(0)(6.1.1)

/f(O) =J-E1 (O) + -,Iec(0) (6.1.2)
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I
at z=1,

;7 3( 1 Rv - R 2 (1) (6.1.3)

. () = - ,R .(1)(6.1.4)

where , are defined in Figure(6.1'. From Eq.(6.1.4), the fields at z = 0 can be

obtained

(O)e -(()e 6.1..5

or,
i q () = V~2 (0)e (6.1.6)i

with

b 2nkl (6.1.7)

where n is the refractive index, k is wavenumber, and I is cavity length. Substitution

of Eq(6.1.6) into Eq(6.1.1) gives the reflected and transmitted fields as well as fields

inside the cavity.

-2(0) = 1 - Re '( 0 ) (6.1.7

vI - Rv R . (0 6.1.S
( 1 - Re 6  e .

-(0) - - Re'6 (1 e) (0) (6.1.9)i i -- b e 2- 1(0) (6.1.10)

Now the ratio I(t)/i() of the transmitted intensity to the incident intensity is

I( 1 3(1)( 2 
_ 1 - R

1 ( i) - 1 (0)1 2  
- 1 - Re'6

(1-R)2  (1-R)2

1+R 2 -2Rcos6 (1-R) 2 - 4Rsin 2 6

I
=4R 25 0(.1 1

I~ 1 sin 1+ F sin 2

17 -R ) 2
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with I
0 = 2Mr -6 = 2Mir - 2nkl

F= 4R

(I - R) 2

where 0 is the cavity detuning in modulo 27r. The finesse F is defined by I
.F 2-r 7r VT.T -= 2 (6.1.12) 1

where E is the FWHM of the transmission function. Eq.(6.1.11) describes the trans-

mission function of an empty F-P cavity. First we find that the output intensity is 3
linearly proportional to the input intensity for a given finesse F and cavity detuning

9. Second, we find that the transmission function has a maximum value of 1 for |
zero cavity detuning (9 =0), and that the transmission function depends on the

finesse for nonzero cavity detuning, low finesse corresponding to larger leaking of 1
light through F-P as illustrated in Figure 6.2.1

6.2 Optical Bistability in Steady State

We now consider the electric field of the light wave propagating through the

Fabry-Perot cavity which is filled with the Bloch system resonant with the light 3
frequency. The Maxwell equation for the electromagnetic field inside the nonlinear

medium with susceptibility X(Zt) is readily obtained. 3
Cx= t (6.2.1)1

X oaf- (6.2.2)
The constitutive relation is C

(i, t) = ,(-,t)!(i,t) = (1 +41rX(;,t))JE(,t) = f(i,t) +47r5(F,t) (6.2.3) 1
From the Eqs.(6.2.1), (6.2.2) and (6.2.3), we get the wave equation for the electric

field inside the dielectric medium. I
(V 102 4r a2  1 a2

V c2 0)E(xt) c2 Ot 2=(i,t) =- -( i t Of(i,t) ) (6.2.4)
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For transverse light with frequency w, the wave equation can be simplified to the

expression
92

(1 +4r(z))"" )E(z) = 0 (6.2.5

For a Bloch system, the susceptibility X(z) is a function of the light intensity as well

as the coordinate z. From Eq.(3.7.10), the Bloch susceptibility inside the cavity is

ac i
X(z) = 4 (6.2.6)4 7' w I + A 2 + I -1 ( ) 1 2 1

The optical bistability phenomena can be explained by solving Eq.(6.2.5) with the

Bloch susceptibility Eq.(6.2.6) in the proper boundary conditions determined by the

cavity. The field inside the cavity has both a slow variation from the linear absorp-

tion and a rapid variation from the interference of the forward and the backward

waves, and the Eqs.(6.2.5) and (6.2.6) can be solved numerically for the individual

experimental configurations.

An analytical PYpression is available when a reasonable approximation is

made. Because the interference of the forward and the backward waves forms a

standing wave in the F-P cavity, we can take a spatial average of the field intensity

inside the cavity and get the spatial-averaged nonlinear susceptibility which explains

the nonlinear phase shift leading to a nonlinear transmission function of F-P. Taking

the spatial average of the field inside the cavity, the nonlinear susceptibility is simply

given as

X(I) = (x(z,I)) = 4r 1 - A2 + (Iz(z)l 2 ) (6.2.7)

To find the electromagnetic field inside the cavity, we note that the forward and the

back. ard waves at the coordinate z are

SN1-R ei,

-F(Z) =,E2(O)e'nkz - en s.(0) (6.2.8)

1 inz 1 R /R b-ik

eB(z) =E2(O)e -  = - Rei6 e ikzi(O) (6.2.9)
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where CF and CB are the forward and backward propagating light wave, respectively.

Taking the approximation R -- 1, the field inside the cavity is

v -' - ~k e ise -inkz C, (0)I
1 - Re i6

"t 6

e e ink eibe- nz63l (6.2.10)

Now taking the spatial average of le(z)j 2 ,

R 4(sin 2 nkz)1e 3(l)1 1 2 R 63(1)1' (6.2.11)

Substituting Eq.(6.2.11) into Eq.(6.2.7), the spatially averaged nonlinear suscepti-

bility can be written in terms of the transmitted intensity.
acA i (..2

x(I) = (x(z,I)) = ac 2 (6.2.12)

Now recall that from Eq.(6.1.11) the ratio of the transmitted intensity to the incident 1

intensity is
I__(1)_ 1 - R e _ 1 -R=I R 12 (6.2.13) 3
ICI(O) 2 = 1- Re 6 e 1 - Reib( )

where (I) is the intensity dependent nonlinear phase shift. The Bloch system

inside the cavity has an intensity dependent refractive index, n(z) = n(z, 1), and 1

the transmission function of Eq.(6.2.13) has the intensity dependence through x(I)

as shown in Eq.(6.2.12). More explicitly

6 = 2nkl = 2(1 + 27rX)kl = 2k1 + 4irXkl (6.2.14) 1
While keeping terms up to first order, we can expand the phase factor e 6 . I

e is = e-ioei4w k = 1 + i(47rXkl - 0) (6.2.15)

where 0 = 2Mir - 2kI is the cavity detuning in the modulo 21r and is assumed to

be small relative to 27r. This assumption is reasonable since most of the optical I
221 3
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bistability experiments are performed near, or on, the cavity resonance. From

Eq.(6.2.13) with Eq.(6.2.15) we can get a nonlinear transmission through the Fabry-

Perot cavity containing a Bloch system. Substitution of Eq.(6.2.15) into Eq.(6.2.13)

leads to the ratio of the output intensity to the input intensity as

1 3 (l) 2  1 1 -R 2

; (0) 12  1 R e2)

R

_________1- 7R~l - 0)
2 (6.2.16

Eq.(621R isf th mos genra exrsso 10)11 - R

Eq.(6.2.16) is the most general expression describing steady state bistable behavior

of a nonlinear Fabry-Perot cavity. We find that the transmission through a Fabry-

Perot cavity containing an optical Bloch two-level system is a multi-valued function

of the output intensity. In another words, the output intensity can assume one

or three different values depending on the input light intenisty. In the following

section, the various regimes of a steady-state O.B. will 1:,e discussed.

6.3 Optical Bistability: Various Regimes

In this section, we discuss different kinds of O.B. by considering various

cases of the parameters specifiying the system. The nonlinear transmission function

Eq.(6.2.6) describes the steady state O.B. in a general case. Taking the absolute

value of the right hand side of Eq.(6.2.6)

t6 (0)12

2

1

-- 1 OR/L 1IR a R .

(1 + 2 + _ _(3(1)1 + 2 +
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aIR 2 aIR I
A 2  2 I ~ ( ) '2 -R I

12 1 - + A 2  1- R (1)12

Defining the parameters as follows,

X =V 2 3(/) (6.3.2)

Y = 1 R61(0) (6.3.3) 1
=2 (1 - R) (6.3.4)

OR
=(I - R)(.35I

Eq.(6.3.21 can be rewritten [7

Y2= X2(1 27 2  +(I+ 2  -o)2 (6.3.6)

X and Y are the normalized transmitted and the incident electric amplitudes, re-

spectively. We can define the normalized transmitted and incident light intensity I
in the same way.

t= X 2, /i=y2 (6.3.7) 1
In terms of the intensities Eq.(6.3.6) can be rewritten as

+2C ) + ( )A2 -)2 (6.3.8)+ A 2 +I + A2 +It

Eq.(6.3.8) is the steady-state state equation for the nonlinear F-P in a general case.

For specific values of the cooperative parameter C and initial cavity detuning 0,

the state equation can be plotted in 4erms of the input intensity and the output 3
intensity. The cooperative parameter C is a measure of cooperativity between

microscopic dipole moments, already introduced in Chapter 2. Optical bistability 3
223 3
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cannot be observed for the cooperativite parameter of value less than 4, which isIanalogous to the absence of ferromagnetism at a temperature above the critical

temperature, as discussed in Chapter 2. Let's consider a couple of interesting cases.

jFirst we check the empty cavity case, where C vanishes because there is no

absorption inside the cavity. The state equation reduces to

1, = It(1 + 02) (6.3.9)

which implies that the output intensity is linearly proportional to the input intensitv.

I For comparison, we find the transmission function Eq.(6.1.11) derived for an empty

F-P cavity when the detuning 0 is to be small. From Eq.(6.1.11)

Ii = It(1 + Fsin)2  ) It(1 + 4R sin 2 0)

2 (1- R) 2

i (1R)2  )2 = )( l + (  2+2) (6.3.10)

We simply reproduce the state equation for the empty case, Eq.(6.3.9).

The next simplest case is when the cavity is tuned on the maximum trans-

I mission, 0=0, and the atomic detuning is zero, A=0. This case is called absorptive

O.B.. From Eq.(6.3.8), we get

Ii = It(1 + ' ), (6.3.11)

Noting the definition of the normalized amplitudes (Eq.(6.3.7)), we find that the

state equation Eq.(6.3.11) is identical to the steady state solution of Fokker-Planck

equation shown in Sec.2.2.(Refer to Eq.(2.2.22))

I 2CX (6.3.12)
Y=X+ 1+X2

For absorptive O.B. with a detuned cavity in which A=0, 0 : -0, we find

I = It{(1 + 2C )2 + o}. (6.3.12)
i+ It
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It can be a multiple function of Ii only for the cavity detuning 0 less than some I
,maz as will be seen shortly.

In a most general case of nonzero A and 0, a contour diagram can be drawn I
for a given C where a bistability can take place. This is shown in Figure (6.3).

6.4 Optical Bistability: Transient State

The transient state of O.B. can be properly described by solving the time de-

pendent Fokker-Planck equation introduced in Sec.2.2. Here we have to be careful

to distinguish two different kinds of time dependence. The Fokker-Planck equa-

tion describes the time evolution of the probability distribution function, and it is

useful when we are particularly interested in the stability of the metastable state.

According to our assumption of the smallness of q in Eq.(2.2.28), the system in

the meatastable state does not decay into the stable state (true minimum) rapidly.

The dynamical behvior of O.B. has been studied theoretically by solving the Fokker-

Planck equation numerically.(111-(131 One interesting question is how fast the system 3
decays into the stable state once it is put in the metastable state. This corresponds

to the negative slope region in the state diagram. This problem is closely related 3
to the quantum mechanical tunnelling probability of a Brownian particle. Accord-

ing to the numerical calculations, the time required to penetrate the potential well I
varies for different potential depths and widths, as expected, but is much longer

than the other relevant experimental time scales; Hence, in fact the system can be I
approximated to be in a stationary state. In another words, the relaxation time to I
the true minimun is much longer than the relevant time scales such as the pulse

width of the incident light and the material relaxation time.

The real transient behavior of O.B. should be studied when the external input

field changes in time. Now the problem reduces to the calculation of the particle 3
trajectory for the time dependent Ginzburg-Landau potential. Here we can see that

the important parameter in the shape of the probability distribution function is the 3
225 3
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diffusion constant q, which depends on the spontaneous decay time of the material

and the cavity decay time.

The transient behavior can be understood by solving the Newtonian equation

of motion describing a particle in the Ginzburg-Landau potential with the time-

dependent external field.
d€ OF

d (6.4.1)
d7 2  00

For the ferromagnets in the magnetic field,

=a0 +,303 +Hsinwt (6.4.2)

a<0, i3>0 (6.4.3)

Eq.(6.4.2) is known as Duffing equation, which describes a driven nonlinear oscillator

allowing a phase transition. The analytic solution of Eq.(6.4.2) is not available, and

the transient behavior can be studied only by numerical method. For O.B., we need

to solve the equation

2 2CxI= -{- 1 + yo sin W} (6.4.3)q 1+ X2

The dynamical behavior for the on-set of O.B. has been studied numerically.

(14 A numerical analysis of the dynamical behavior of O.B. shows hysteresis behav-

ior rather than complete switch-on and switch-off. It is important to characterize

the dynamical behavior of a first order phase transition far from equilibrium sep-

arately from a steady state behavior. One approach in studying the dynamical

behavior is to look at a double-well potential, and study the particle motion in a

various regimes of the physical parameters. i5] I-[191

6.5 Optical Bistability Experiment

6.5.1 Instrumentations
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(A) Ti:Sapphire Laser I
I

We used a single mode pulsed Ti : Al 203 laser ;°I- 24] pumped by a doubled

Nd:YAG laser. The pump laser was a Q-switched nanosecond laser with 10 Hz I
repetition rate, from which 50 mJ of SHG with 20 ns pulse duration was readily

availabie. In the Ti : A1203 laser cavity, mirrors with reflectivity of 95% and I
flatness of A/10 were used. A typical configuration of Ti : A1203 laser oscillator

configuration is shown in Figure(6.4). The SHG power from a Nd:YAG laser is

controlled by a thin film polarizer and a half-wave plate assembly. A Ti : Al 203 rod 3
has a typical damage threshold of 4 Joule/cm2 . The titanium doped sapphire rod

is end-pumped with the pump beam polarization along the optical axis of sapphire I
rod, and the operating frequency of the laser was selected by a birefringent filter

made of quartz plates.[251 A multiple longitudinal mode operation of Ti : Al 2 03 laser 3
is shown in Figure(6.5). The cavity spacing was 36 inches, and it is clearly seen

that the separation of each mode is 6 nsec corresponding to the round trip time of 3
the given cavity spacing. When a resonant reflector (etalon) was substituted for the

output coupler, we could get a single longitudinal mode output pulse. In single mode I
Ti : Al 2 03 laser gave a typical energy of 80p.J per pulse with 40 ns pulse width when

pumped with 35 mJ of SHG. The band width of single mode Ti : A1203 laser was I
measured to be less than 1 GHz. The laser frequency of Ti : A1203 laser was tunable

between 700nm to 1.01m by a birefringent filter. In the bistability experiment, a

smooth, stable, reproducible temporal shape of the laser pulse is essential to show I
a direct display of the hysteresis arising from the nonlinear response of polymer

dye inside Fabry-Perot cavity, and single mode Ti : A1203 laser gave a satisfactory I
temporal shape, which is due to the long storage time of fluorescence from Ti +± ion

inside sapphire crystal field. A typical temporal shape is shown in Fugure(6.6) Also 3
shown in Figure(6.7) is the temporal pulse shape of SHG of YAG pumping (left)

and single mode Ti : A12 0 3 laser output (right). 3
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(B) Laser diode

lazr diude i. a cor;mient ligt source providing a stable output. '6 In

a typical semiconductor laser diode, an active semiconductor laver of thickness of

0.3,um is sandwiched by p and n type semiconductors. The laser operational wave-

length depends on the active medium, and can be varied from SOOnm to 1.53jm.

The most readily available laser diode is a GaAs laser having an operating wave-

length near IR. typically 840nm. Since laser operation in a semiconductor occurs

upon recombination of electron-hole pairs generated by the injected current, the

conversion efficiency is highly dependent on the temperature of the active medium.

The natural reflectivity of the semiconductor surface is used as the laser cavity, and

a typical size of the laser emitting facet is 0.5x 2.O% -m 2 with cavity length 10 0 ,m.

Laser light comes out from both facets of the active layer, with one used as the

output coupler, the other coupled to a photodiode to monitor the laser power. In

an index-guide configuration, the output light has a single transverse mode, while

a gain-guided configuration gives multiple transvers modes. The output Light is

linearly polarized along the facet strip.

Compared to other gas or solid lasers, laser diodes have a rather high laser

conversion efficiency, which depends on the laser head temperature. At 2.5' C. 1.5

mW/facet is easily available with 25 mA operational current in an index-guided

configuration. Once the operational current is above the threshold current. the

output power is linearly proportional to the operational current up to the breakdown

point. In CW operation, the temperature of the laser head and the operational

current can be well controlled, giving a very stable output power. A laser diode can

also be operated in a pulsed mode, but the varying temperature and current usually

cause a much worse operation in the laser spectrum. In fact, even in CW operation

the short cavity length (order of lOOum) can support many longitudinal modes.

and much technological effort has been focused on reducing the broad line width

of output optical spectrum. In a real application of a laser diode as a light source.
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good collimation optics is needed to collect large diverging light, which comes from

the diffraction of light itself. A typical diverging angle is order of 400-60', and a

microscopic objective lens can be employed as a collimating optics.

SA Mitsubish single mode laser diode (ML 3401) with an operational wave-

length of A=S19 nm was successfully employed at the early stage of the saturable

absorption experiments. While a couple of milliwatts is a typical output power

available form a single mode laser diode, a couple of hundred milliwatt of laser

I power can be obtained from a phased-array of diodes, which is commercially avail-

able (Spectra Diode Labs; SDL 2422-111 CW laser diode, 200 mW, TO-3 window,

SDL 800 laser diode driver, SDL 800-H finned heat-sink, mount for TO-3). One

main difficulty in using the phased-array laser diode in the optical bistability exper-

iments has been the light collimation in a long optical path through a Fabry-Perot

interferometer.

(C) Light Detectors

In the O.B. experiments, the hysteresis behavior of the transmission from a

nonlinear F-P interferometer upon increase and decrease of the incident light inten-

sity is detected by a light detector. In standard nonlinear optical experiments, such

as the optical Kerr effect or third harmonic generation, a time-convoluted optical

signal is integrated over the entire pulse duration in order to obtain the nonlinear

optical response. In O.B. experiments, in contrast, the detailed temporal change

experienced by an incident light pulse passing through the nonlinear optical F-P in-

terferometer contains all the information on the dynamical processes resulting from

nonlinear optical response. Therefore, it is very important to work in a light inten-

sity range where the light detectors have a completly linear photo response. In order

to achieve such a condition, the light intensity impinging on the detector should be

quite decreased without introducing afty change in beam profile. However, in order

to observe O.B., we need to deal with a light intensity strong enough to induce a

sufficient nonlinear optical effect. With these considerations, it is found that a pho-
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tomultiplier tube is not an appropriate detector in an O.B. experiment. A simple 1
Motorola MRD 510 silicon PIN photodiode was employed in O.B. experiments. For

a discussion of PIN photodiode circuits, see Sec.5.4.1 (C).

(D) Oscilloscope n

In a nonlinear optics experiment where a short optical pulse is used, a large

bandwidth oscilloscope is essential to monitor a real time fast signal. Tektronix

7104 1GHz is an adequate oscilloscope for an expeiment involving picosecond and

nanosecond pulses. 7104 scope can house 2 amplifier plug-ins and 2 time base

plug-ins. With 7B10 time base plug-in, the rising time resolution can be up to 200

ps. This scope can also be operated in X-Y mode, that is one amplifier plug-in

at either left or right vertical slot and the other amplifier plug-in at B-horizontal,

with a time base at A-horizontal. In option B version of 7104, "a horizontal delay

line is attached to the instrument (at B-horizontal) permitting signal phase cor-

rection between the vertical and horizontal deflection system", which is important

in a nanosecond optical bistability experiment. Tektronix 7A29 amplifier plug-in

with option 4 features a variable delay (+500ps), which is useful in adjusting the

synchronization between input and output signals in optical bistability experiment.

(E) Fabry-Perot Interferometer m

In the O.B. experiments, a Fabry-Perot interferometer is used with a nonlin-

ear optical material inserted between two mirrors. A standard Fabry-Perot interfer-

ometer operation is described here. The Fabry-Perot interferometer[27] -[281 consists

of two parallel mirrors mounted on a super-invar bar supported base. The cavity

length, or the mirror spacing, is adjustable by moving one mirror along a super-

invar bar. The finsesse of the Fabry-Perot interferometer is affected by a couple of

instrument parameters. That is, the iilverse square of instrumental finesse is given

as a sum of inverse squares of the reflection finesse, mirror flatness finesse, and pin

hole finesse. I
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The reflectivity of the mirror determines the reflection finesse, .FR= 2-rx/

= 7r/R/(1 - R). When absorption occurs inside the cavity, it can be taken into

account by redefining an effective reflectivity, R, = R x exp(-aL). The mirror

flatness finesse, FF, is simply M/2 for a mirror with the flatness of A/M. The pin

hole finesse. Fp, is determined by the power of the collimating lens and the pin

hole diameter; that is, Fp = /LA { /D 7, where D is the pin hole diamter, f the

focal length of collimating lens, and d the cavity spacing.

m For a given fixed cavity length d, the free spectral range (F.S.R.) of a F-P

interferometer is given as c/2nd, where c is the velocity of light, n2 the refractive

index of material inside the cavity, and d the cavity spacing. The instrumental

linewidth (c) is the ratio of F.S.R. to the finesse. Thus, a large finesse correpsonds

to a smaller instrumental linewidth, or higer resolution of the instrument. For a

given finesse, the instrumental linewidth can be reduced by reducing the F.S.R., or

by simply increasing the cavity spacing, d.

A piezo-electric transducer (PZT) allows a fine control of the mirror position

(2.21y/1000 V). A PZT itself has a hysteresis behavior between the position and

the applied high voltage, which has to be taken fully into account when an absolute

position of the mirror is measured. By applying a high ramp voltage across PZT. a

Fabry-Perot interference pattern can be scanned. A typical interference pattern is

shown in Figure(6.8).

A Fabry-Perot interferometer can be used not only for optical bistability

experiments, but also for nonlinear optical interferometry experiments291 -30 as

shown in Figure(6.9). An intense, pulsed, pump beam induces an intensity depend-

edent refractive index change, resulting in a temporary phase shift. The resulting

shift in the Fabry-Perot interference pattern can be. probed by a CW probe light

source. Since a transient Fabry-Perot interference pattern is difficult to observe, it

is important to employ a pump laser having a pulse duration longer than the cavity

round trip time.
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6.5.2 Experimental Layout n

The optical bistability experimental layout (Figure6.1O) was basically the

same as the arrangement used for measuring the dispersion of saturable absorption.

The laser output was partially reflected by a pellicle beam splitter to a reference n

silicon detector, and the transmitted beam was tightly focused on the thin film

which had been spin coated directly onto the front mirror. The output fringes were

collimated and passed through a 500 kim pinhole, and a sample silicon detector

monitored the intenzity at the central part of the Bull's eve interference fringe.

Silicon PIN photodiodes were used for reference and sample arms, and the out-

put intensity versus input intensity was directly displayed on a 1 GHz oscilloscope

operating in the x-y mode and externally triggered. At nanosecond time scales,

initial measurements were attempted at 813 nm using the output from the Nd:YAG

pumped methane Raman cell as the laser source, but later, more stable amd smooth

pulses at 799 nm from a single-mode pulsed Ti:A12 0 3 laser pumped by a frequency

doubled Nd:YAG laser were used. 3
The free spectral range of cavity spacing bewteen two mirrors was set at 2.3

GHz. The 752 nm line of C.W. Kr ' laser was employed to align Fabry-Perot inter-

ferometer. After the alignment of Fabry-Perot is asssured, Ti : A120 3 laser output

was gradually focused by f = 2.Om lens and passed through the pin holes to follow

the same beam path of Kr+ laser. The maximum incident light intensity at the

front mirror of Fabry-Perot was 160kW/cm 2 . The light intensity was controlled by

the variable neutral density filter in front of the polarizer. Silicon PIN photodiodes

were used for reference arm and sample arm, and the signal, i.e., output intensity

versus input intensity, was directly displayed on the 1 GHz oscilloscope in X-Y mode

with external triggering.

6.5.3 Measurement and Analysis

The SINC thin films were simply spin coated as a wide area (2 - 5 cm in
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diameter) films of approximately 80 nm thickness on the front dielectric mirror of

the Fabry-Perot interferometer (Burleigh RC-110). The free spectral range of the

cavity was adjustable and set at 12.5 GHz. Initial cavity detuning was adjusted by

varying the hA.,. voltage applied to PZT annular ring that held the output mirror

(the PZT had total motion of 2.21 ym/1000 V), and when this output mirror was

scanned, a Fabry-Perot interference pattern with a finesse of 2 was obtained with

the sample in the cavity. Refer to Figure(6.11).

I Figure(6.12) and (6.13) shows the bistable hysteresis behavior observed when

40 ns pulses with intensity 160 kW/cm2 at 799 nm were incident on the nonlinear

F-P. We found that for zero cavity detuning (0=0.0) (Figure(6.12)) the bistable

I behavior was the largest, while when the cavity was detuned (0=7r) (Figure(6.13)),

the shape of the hysteresis curve changed and the effect became much smaller.

I In each case, the data were reproducible through many cycles of increased and

decreased incident light intensity. Further, the data were also reproducible when

focussing at different areas of each film sample. This kind of initial cavity detuning

dependence is typical of absorptive OB, which results from saturable absorption

and a subsequent change in the loss of the F-P cavity, enabling higher transmission

than is possible at low light levels. However, the greatly reduced effects observed

for nonzero cavity detuning indicate a very small dispersive contribution.

The incident laser wavelength was moved to 780 nm corresponding to near op-

timum conditions for possible dispersive contributions to the bistability. The same

measurements were repeated, and under all conditions no bistable behavior was

observed (Figure(6.14)). The absence of any bistable behavior at 780nm, where a

large dispersive effect is expected from the Kramers-Kronig relation analysis, means

simply that the relatively broad Q-band is not one single homogeneously broadened

line but an inhomogeneously broadened envelope for many homogeneous lines. and

supports the microscopic picture of the glassy polymer SINC film introduced in

Chapter 4. Thus, near maximum saturable absorption at 810 nm, naphthalocya-
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nine thin films exhibit primarily absorptive optical bistability at nanosecond time 3
scales. The above analysis is based on steady state conditions for optical bistability

because of the relevant time scales (pulse width: 40ns; relaxation time: 5ns; and I
cavity roundtrip time: ins), but transient effects may also play some role in the

observed hysteresis behavior, which continues to be examined in on-going studies. I
Since purely absorptive optical bistability is rarely observed, a systematic 3

series of studies of possible thermally-induced refractive index changes in the thin

films were performed as a function of increased pulse duration from 10-6 to 2 sec-

onds. The laser source used in these studies was the AOM chopped, Spectra-Physics

CW ring dye laser described above. Refer to Figure(6.15) for the experimental lay-

out. Figure(6.16) shows an example of the optical bistability observed; the pulse

width was 2.0 sec and the duty cycle 20%. When the cavity was tuned on reso- I
nance with the incident light wavelength (0=0.0, lower right in Figure(6.16)), no

hysteresis loop was observed, indicating the lack of an absorptive bistability effect, I
and this was true even when the dye laser output frequency was resonant with the

linear absorption peak of the sample. However, for a negative 0 (-1.0, left in Fig-

ure(6.16)), bistable hysteresis with a counterclockwise circulation was observed, and

for positive 0 (0.75, upper right in Figure(6.16)), the bistable hysteresis had clock-

wise circulation. With the pulse width and the resonant wavelength near the linear

absorp'ion peak of 810 nm, the bistable behavior is due to a thermally-induced

dispersive intensity dependent refractive index change. Most importantly, this be-

havior is distinctly different from the fast pulse bistability observed at nanosecond

timescales. I
The bistable loops do not show a complete switching on and switching off.

The reason for this is that eventhough the resonant n2 value of the naphthalocya-

nine oligomer is fairly large, the film thickness (80 nm) is so small that the nonlinear

phase shift experienced by the light inside the etalon is not large enough for com-

plete switching to occur. According to the Ginzburg-Landau potential description
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Iof O.B.of Chapter 2, the magnitude of hysteresis effect depends on a number of

the physical parameters. Among these paramters, the cooperativity C is the most
important factor in determining the size of the hyteresis loop. In our experimental

conditions, the cooperative value C is approximately 10 corresponding to the con-

ditions shown for Figure (2.16). As can be seen from the figure, these conditions

Ilead to a relatively low contrast loops as observed. Current experiments in our

laboratory are focused on this issue and measurements are being performed as a

jfunction of film thickness, optical density, cavity length, and pulse wid'ti.

I
[
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Figure Captions; Chapter 6 I

Figure 6.1; Electromagnetic Wave in Fabry-Perot Interferometer 3
Figure 6.2; Transmission Function of a Fabry-Perot Interferometer

Figure 6.3; Contour Diagram for Optical Bistability (A = atomic detuning, o =

initial cavity detuning, C = cooperativity)

Figure 6.4; Ti:Sapphire Laser Oscillator Design i
Figure 6.5; Multi Longitudinal Modes from Ti:Sapphire Laser

Figure 6.6; Single Longitudinal Mode from Ti:Sapphire Laser

Figure 6.7; SHG YAG Pumping and Single Mode from Ti:Sapphire Laser

Figure 6.8; Fabry-Perot Interference Pattern for an Empty Cavity

Figure 6.9; Experimental Layout for Nolinear Interferometry I
Figure 6.10; Experimental Layout for Optical Bistability Experiment

Figure 6.11; Fabry-Perot Interference Pattern with Sample inside the Cavity i

Figure 6.12; Absorptive Optical Bistability with Zero Cavity Detuning

Figure 6.13; Absorptive Optical Bistability at Cavity Detuning 3
Figure 6.14; No Optical Bistability at Either Cavity Detuning at Maximum Refrac-

tive Index Change 3
Figure 6.15; Experimental Layout for Optical Bistability Experiment; Long Pulse

Regime i
Figure 6.16; Thermal Dispersive Optical Bistability at with Long Pulse Duration
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Transmission Function of a Fabry-Perot InterferometerI

0I
2 On - 1

a (rodiI

Figure 6I
240



Contour Diagram for Optical Bistability
(D= atomic detuning, f, =initial cavity detuning, C = cooperativity)
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SHG YAG Pumping and Single Mode from TI:Sapphire Laser
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Fabry-Perot Interference Pattern for an Empty Cavity
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Experimental Layout for Nonlinear Interferometry
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Experimental Layout for Optical Bistability Experiment
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Fabry-Perot Interference Pattern with a Sample inside the Cavity
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Absorptive Optical Bistability with Zero Cavity Detuning
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Absorptive Optical Bistability at Cavity Detuning
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CHAPTER 7

CONCLUSION

The presence of large oscillator strength ,r-electron bands in the visible and

near ultraviolet characteristic of conjugated quasi two dimensional structure pro-

vides attractive conditions for studying resonant X( 3 ) processes, especially in ph-

thalocyanine related structures. A physical model for the thin film that a mi-

croscopic composites system of molecular optical sites distributed in a TLS glass

random medium is presented. The resonant nonlinear optical properties of homo-

geneously broadened lines contained in the inhomogeneously broadened Gaussian

envelope were directly investigated by a standard saturable absorption measure-

ments. These results showed for the SINC films that saturable absorption occurs at

the peak maximum of the low-frequency Q band near 810 nm with essentailly zero

unsaturable background absorption and that on-site -r-electron excitations of the Q

band in individual molecular sites are responsible for the large resonant nonlinear

optical response n 2 of 1X10 - 4 cm 2/kW at 810 nm.

Optical bistability is a quantum optical example of a first order nonequilib-

rium phase transition. A nonlinear optical material contained in an optical cavity

driven resonantly by an external coherent optical field undergoes a first order phase

transition to a new nonequilibrium stationary state of broken symmetry. A care-

ful experimetal study of optical bistability in thin film etalon demonstrated that

near the peak maximum of the saturable Q band centered at 810 nm. SINC thin

films exhibit primarily electronic absorptive optical bistability at fast time scales

(nanoseconds). At long time scales (seconds), thermally induced dispersive bista-

bility occurs, which is entirely different and distinct from the observed fast time

beha vior.
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Appendix 1. Second Quantization Expression of Maxwell-Bloch

IEquation
The vector potential for a electromagnetic field is expressed in a second quan-

tization form as follows.

.t 2 V~ctb wt-ei(wtkz) + bxzei(wtkz) (Al.1

The atoms are described by the wavefunction iV'j) and lik2) when in the excited

and the ground state respectively. In the second quantization the atomic state at

postion xt is described by at and a

I is) = at iV2), i¢2) = a, )(A1.2)

IAccording to the minimal coupling

e - ,e 2, V

me m hwA V~
I ''=- -p.Ao = _h-m *PK-P2) ' ' '  (AL

I The Hamiltonian of the system composed of a field and a matter in the dipole

approxiamtion is

H -- ,btb, + E he ata,, + h E(h*,atb, + h.c.) (A1.)

where

h -21 2 r

According to the Heisenberg equation of motion

- = iwxbt + i h" ,' (A1.6)

dt

I A a (A1.7)I 256E
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at a aat (A1.8)I

The above equations are true when there is no optical pumping. If the external 3
driving field is present, the population inversion a, is not a constant but time-
dependent. ___!

de pen --t( , 0 o) + 2i(a . h ,b - h.c.) (A 1.9)

For simplicity we assume that the F-P cavity support only one single mode resonant

with the atomic frequency. 3
WA = w = (A1.10)

Introducing the harmonic time-dependence, the Maxwell-Bloch equation reduces to I
At = _rt+I h,,at (A1.11)dt

dait
d- = -- a t - ihAbta (A1.12)

dt T2

d- = - ( - o) + 2i(h,a,bt - h.c.) (A1.13)

Reference

Haken, H. and Sauermann, H., Z. Physik 173, 261 (1963)
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Appendix 2. Nonlinear Optical Response

Now the interaction Hamitonian is known as Eq(A1.1). Adopting the con-

vention for the electric field as follows,

E(t) = Re{-ewi} = i(Ee- - Eei t ) (.42.1)
2

The dipole moment induced by the external field is

P (t) (r)Ej(t- r)dr

+o ], -r')Ej(t - r)Ek(t - r')drdr'

I F (3)
XikL( ', r")Ej(t - 7)Ek(t - r')E(t - r")d-rd-r'd-r"

+ --... (A2.2)

Here the induced dipole moment is a real quantity and the external field is real,

hence, the response function X(')(t) is a real quantity. First we consider the linear

response. Define the Fourier component of the polarizability.

X = jo X, (t)e dt (A2.3)

From the definition itself it follows one important property of the polarizability.

I Xi(() (y)(-LO) (A2.4)

In the physical process we are intersted in the light frequency of the dipole radiation

I from the induced dipole moment. We need to calculate the Fourier components of

the induced dipole moments.

Pl) (t) = j y)(i)E 3(t -7)d"

= j X1)(r)Re{jetw(tr)}dr

o Xij2
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1L0 X(') (r)(cj e-w(tT) + *ew()

227 f 0 x I Ii w'i~ - ~ -- r E e+iu;(tT.) )drI

22w w~ , Ije- W
= 00d fy~( I)fioSw w) xi- Xi(W')ee+wtS(W, -t

1 [X(j)(w;)ce-iWt + IM+it
=Re{jX()e iwt }

That is,

=i xi (A42.6)I

This relation describes most of the linear optics phenomena. Now the problem

has been reduced to calculating the microscopic susceptibility X~(- w fo h

microscopic description of the system. i -;u)fo h

Let's go to the second order processes. We follow the identical steps allowingI

upto the 2nd orders. The Fourier components are

Xijk(W , W2) = j j~(it 2)ew te w±dtidt 2  (A2.7)

P,( (t)f )= jk(7,r') E3 (t - 7 )EAk(t - -r')d-rdr-'

(1 )2 1) '0 w ~)e-' T  dwdw
2 27r fo xj U w

(,-+ j;e'w1(t) - ee'It-?))( c 2 (t1 + ze i2t')drdrD

2 "

+x(2), - +i(-w-1-W 2 )tI

(2) W2cj~

-w1, -4-2)

1 (2) i0 1iW + ,)

4-()(I- W2 ; -U-1i W2 )C;(WI )C k (w)e-(w1,-2)t} (A2.8)I
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Eq(A2.8) describes the 2nd order nonlinear optical processes. For the degenerate

photons, it represents the second harmonic generation and the optical rectification,

and for the non-degenerate photons, the sum frequency generation and the difference

frequency generations are possible. Similarly, in a 3rd order process, the Fourier

components are

I (3) 00 (3) IJt 1.'12t2 3t3
k( l . -02 1 s =4 Xijkit , t2 ,t3 )e te ew dtidtydt3 (A2.9)

pI 3)(t) 1(!)2 Refx(.3)1 W - W2 - W3; W I,W2 , W3 )6,(wi )Ek(W2 )E I(U; 3 )e-(-1- - -3 ) t
I

( - - i - I -t- W2 w 3 ) W3 ) t

(-w
(WI - W2 - W 3 ; W , 2 , (W13 ) E,( ) E (W 3 )e

-(W1' 2 - ")}
.. (3) !*i(W1 -W2 -'3)t

(3) * W ) i(d + W2- }3)
] (A2.10)

The 3rd order prcesses are very interesting, and we can have nonlinear phenomena

that are not realizable in the 2nd order processes. Before we discuss the individ-

ual nonlinear processes, we consider the symmetrical porperties of the nonlinear

susceptibility tensors.

First, for a non-dissipative system the susceptibilities are symmetric under

the permutation of the tensor indices with the tensor arguments permuted similarly.

For example,

(2) (2)
X ,k(-W!3 ;W) = 4-;0 3 ; w 2, w )

(3) (3)lj ki W- 4; W 1,12'143 )  ---- " ( l-W4;L2,W1, W 3 )

( ) •( 3 ) ( A . 1
- l~ -104; W3 ,w , WIW .W4 ; W2 , W3,W ) (A2.1

(2)
The above symmetry can be seen easily from the symmetric property of (,,k(r,r )

(3) 1 t .

and kj(r,7',t") in Eq.(A2.2). The symmetric property can be extended to the
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m I

index i, which is an important property of the nonlinear susceptibility tensor and m

can be proven by the energy conservation consideration in a non-trivial way.

(2)/ (2)

k3 3 1 2 ,(Wl 10 ,m-

3 .A.-4;-Wi-"2, w3 ) -= ()2.12 )

Eq.(A2.11) and (A2.12) lists most of the intrinsic symmetry properties of the non- m
linear susceptibility tensors, and the independent number of the tensor components

in a particular nonlinear process can be reduced by imposing this symmetry rules.

Secondly there is another symmetry relation called the Kleinman conjecture,

which says that in the far off-resonance regime, the nonlinear suceptibility tensors

are completeiy symmetric, i.e., symmetric under the permutation of the tensor

indices with the tensor arguments fixed. This is a very strong symmetry rule,

anId can be seen from the static limit of the nonlinear optical response, where the

distiction between different frequencies, ,, 1 ,w2 ,w3 ,w4 , vanishes. But in real systems,

there exists a slight dispersion even at the far off-resonant regime; therefore, the 3
Kleinman symmetry does not hold rigorously.

Thirdly, we can list the symmetry property of the nonlinear susceptibility ten- -
sors under the point group. Physical systems, in general, possess a spatial symmtry

which can be expressed in terms of a point group, and the nonlinear optical response I
of the system should obey the same symmetry governed by the point group. From

the tensoriai - ,nsformation property under a particular point group operation. a

relation between the tensor components can be obtained, and the independent com-

ponents can be found for a general nonlinear optical processes. For example, in an

isotropic medium,

13)X I122( -. 4 I, 2, ' ) _W ; ,1 ( - ; I -,A)2,iA3)

X 12 12 
( -

W
a' 4  

WI 
'
A

2 ' ' d l 
-0 -"4 " ) 10
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X() 3)22(- 4; 1 , ,.3 = xX ( -w 4 ; W1 ,,,.2,,, 3 )

x~(3 1,2w3 x~(3) { 1w2w
(3)

iiii(-W(- W;iW1,,.,,X1212(
(3)

SXl12(-3)4;wi,,,2,w3) (A2.13)

Now let's consider an individual 3rd order process. For example, if there is

only one frequency of photons, i.e. w1 = = W3 = w, we have the third harmonic

generation and the self-focusing processes as examples. For self-focusing we have

p( ) 1 (3) _,, _
= 1xijkl - "- , 11,W)C*(W)k(W)61(W)

ijki(-W IA, -U67 W)Cj(U")C (W)Ej(w)

X (3) -ww (A2.14)

In another example of the optical Kerr effect, we have w =UJ3 = w, w2 =U

(3) f ,
P, = 'tW,.kl-L" ; -L", ,,) ) 7 (.

(3)k ( , , (A2.15)

262



I

Appendix 3. Canonical Transformation of Interaction Hamiltonian 1
Here we show the equivalence of the minimal coupling formed by replacing I

the momentum ff with p - "- to the dipole interaction Hamiltonian defined by

H - eA)2 + V(z)
2m CI
p e e 2 .-

2m meV(x)--Ap9 2 mc 2 4A (.43. 1)

Hamilton's equation of motion for the Hamiltonian is
dF .: aH 1 e-

" = m c d  (A3.2)

Now the corresponding Lagrangian can be obtained by the Legendre transformation.

L(;, ) =; * - H i
=X. (mX + cA)- -(mX + -V(z)

c 2m c
e • e - e - -

+ A  (m+ -A)- eAA

mc c 2mc2

.2 e2 M - v(x) + C i. A (AM~)

Since the equation of motion is invariant evenif the Lagrangian is changed upto a

total derivative of an arbitrary function, we transform the Lagrangian by adding

L(X4, E) = L(X4,i) - dc oA)

1 Z.2 V e dA
=-mr - V()- c(£ dA (A3.4)

2 c d

Now we make the Legendre transformation back to get the Hamiltonian. The

canonical momentum if conjugate to X is I
- L

- = MX (A3.5)
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The new Hamiltonian is

Hip) = X' 1f- L1

=lye m e)ly dA
)(- +V(x)- -i-)m 2m c dt

12e -dAg
= . _-._ V(i) + -X. - (A3.6)

2m c dt

The vector potential .4 is a fuction of time and space, and the total time derivative

is given as

dt = +(. V)A (A3.7)

The electric field can be expressed in terms of the vector potential.

-1 at (A3.8)

In the dipole approximation the vector potential has no spatial dependence, i.e.,

Eq.(A3.7) is related to the electric field.

dA _ OA _ -_ _ =cE (A3.9)dt at

Plugging Eq(A3.9) into Eq(A3.6), the total Hamiltonian in Eq(A3.6) is

-2
H(;, P) -- + V(z) - e E = Ho ± H,(t) (A3.10)2m

Therefore thf- interaction Hamilitonian is

H,(t) = -e E(t)= -fi E (A3.11)
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Appendix 4. Orthogonal Transformation of Bloch Equation I

Here we present another way to transform to the rotating frame. In the I

rotating frame of reference where 7jF is stationary.

d d
td d- (.44.1) 3

H =OHO- '

=exp(i 2)2(I + hf * or) exp(-i20)

1 a )!Fo +j-F0- (z=-I + hexp(i -F)( Fa)exp(O o. )
2 2 +22r+fOo~~x(%9
1 1 + h(f +Fe °o.4 + Q-F e-i o'- + !no F 0'z) (A4.2)

2

where the Pauli matrices are defined as folloss;

a, 2 0"2, (A44.3)
(1 0 '(0 (440 -1

2(r+i) 0 0 2 -= zi) 1 0I

The last step in Eq(A4.2) follows from the transformation properties of a - and a-

under the rotation along the 3-axis. I

Oa+O-' =exp(i 20)ar+ exp(-i'2 0)I

0 . 0 0 0
=(cos + io, sin -)o+(cos - ir sin)

=a+e°  (A4.5)

07-0 - ' =a-e - '°  (A4.6)

* I
+. ++

since a'a , -= , 0,

a 0" =a-, aza- = -a- (A4.7) I
265 3

I



Noting

=Qa; + Qva-i+ fzOrz

- 0-(IQO, - a-) -Q~

-(Q -*y~ (Q., - IIa- - ~z(A4.8)

f2- 1 0 y-eCos wt - ine sin wt = ~ (A44.9)

QF= Q. _ S = -Kscoswt - Inesinwt = -Ke+w,(A4.10)

and substituting Eq.(A4.9) and (A4.10) into Eq.(A4.2) leads to the same result as

Eq.(3.5.23).
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Appendix 5. Linear Response Theory I

We review the linear response theory. The total Hamiltonian is I

H = Ho - E(t) (A5.1) I

The eqution of motion for the densty matrix is I

=p(t) _ [H,p(t)] (A5.2) I

Now we suppose that the interaction is much smaller than the unperturbed Hamil-

tonian H0 , and we expand the density matrix in the small quantity. I
p(t) = Pa + Sp(t) (A5.3) I

Then the equation of motion for the change in the density matrix is

ih96bp(t) = Ho, ,p(t)] - E(t)[ki,po! (.45.4)

To make the calculation easier, we introduce a Liouville operator L. I

LA = [H,A] (A5.5)

In terms of the Liouville operator the equation of motion for the density matrix is

- Lp(t) (A5.6)

2h8- p(t) - (Lo + L.)(po + bp(t)) = Lobp(t) + Lapo (A5.7)

With the initial condition that I
0t -0) = P (A5.8)
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Eq.(A5.7) can be solved in a straightforward way.

6p(t) = e-iL°(t-t(-oo))/hbp(- 0 0 ) + dt'e-iLo(t-t')lh(-i )Po
-00h

tI-= dt'e - t') /h )[-ILE(t'), po]

, = j dt'- (t - t'),po E(t') (A5.9)

Now let's consider the change in the dipole moment due to the interaction. The

change in the dipole moment can be accounted for by the change in the denstv

I matrix.

I 6p(t) =Tr{45p(t)jI}
I t
-dt'Tr{[ji(t - t'),po]Ls}E(t')h f 0
I dt'Trfpfj,ji(t - t')]}E(t') (A5.10)

The susceptibility is defined

WO(t = dt'/x(t - t')E(t') (A5.1 1)

We find that

X(t) = = Tr{po[t, 1 i(t)]} (A5.12)

The Fourier transform of the susceptibility gives the information on the spectral

structure.

x(w) = JX(t)e"tdt (A5.13)

Let's look at the imaginary part of the susceptibility which is related to the dissi-

pation of the system.

x""( = dtsin(wt)X(t)

=- dt sin(wt)Tr{p[.i,j(t)]}
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hj dt sin(wt)Tr pi.(t)} l dt sin(wt)TrjpAt(t)j}

Sj dt sin(wt)Trfp,4bL(t)} + J dt sin(wt)Trjpt( -t)pt}

Sf'0dt sin(wt)Tr{ppiji(t)}

where the following identity has been used.

Tr{pp(-t)1 i} = Tr{pe-iHot/h pue +iHot/h PI

=TfL iHo ti ?Ljoje - iHot/h} I TrpAAc.(t)} (A5.15)
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Appendix 6. Formal Solution for the Line Shape Function

We find a formal solution for the line shape function.

F(,) 1 Re dteiw'C,;(t)
ir J1(, ) =

S=-Re0 dte'w Tr{ase-iLtPX }
1 1
-ReTr{rix 

PX,}
IrL

= -1ImTr{zx (1I .1(w) )P, (A6.1)
Ir . - L o Lo

where the identity of operator has been used.

-L (L +M(w) ) (A6.2)u.)~(. ---U - L L 0

I with

M(w) = L, + L, M(W) (A6.3)
uI- Lo

From the initial conditions Eq.(4.3.25) the densty matrix of the bath appears only in

the inteaction Hamiltonian, and the Liouville operator for the unperturbed Hamil-

tonian changes to the Liouvilles operator for the system only.

I 1 1
F(w) = -- ImTr'{z( )p-'I( (A6.4)ir :;--L L1 +- -M-) L _ L

where the operator M(w) containing the interaction Hamiltonian appears as an

Saverage value over the bath variables.

(M(w)) - Trb{M(w)pb} (A6.5)

2

I
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Appendix 7. Intersystem Crossing in a Many-electron System I
Now let's look at the selection rule more carefully. In a polyatomic molecule

we have more than one center ion, therefore we have to consider the interaction of

each electrons with all the different centers.

H 1 n I V(rik) .

2mE2c2 Z rE Orik Sik
1c k=1 i=1 U

For a multi-electron molecule the wavefunction should be properly antiSym-

metrized. For example the singlet state is expressed in Slater determinant. I

Sk = I ((fi11edMO)aai0b3 2 1 - j(filledMO)a3jba2 i) (A7.2)

and the triplet states are 1
T -"= (filedMO)aai ca2!

To - (filledMO)aaic321 + (filledMO)a3ica2 .

.T' ='(filledMO)a c,321 (.47.3)

Let's look at the matrix element between S and T" 1. U
(Sk IH' Tt )I

flctb,21- ja~ibC12 fH"1(aaiCaf2))

I ((aaibO2 (H' + H')I(aaica 2 )) - (aa 2 b,3i(H + H2)(aaica 2 ))

- (aO3iba2(H' + H')l(aaCea2 )) + (aO2ba i(H + H)(aajca 2 ))

- ((aaiiai)(b3 2 HIca 2) (bA3 iHjlaalI(aa2 Ca2c)
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- a13,jHl!aaY'ba2,Ca2)

1- /i2 C - -. H cb A21

I 2  \ Y 2 2)

I j j' c) -Z b 'A21A 7 .4

In the same way, 
(74

(Sk 1H' I Tj)h

- (b I A,2 1.2 Ic) h

- (b~l',1c)(A7.5)

(Sk 1H'1 T7-1)
1 (IA2.,I C h+ (bIA,2l,,jc)-)

2 1
I (bl l'. c) + ± l l Ic) ( 7 6
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Appendix 8. Kramers-Kronig Relation I

From causality and the linear response theoy we can get the Kramers-Kronig I

(K-K) relations. The relation between the real part and imaginary part of the

dielectric constant E(.,) satisfies the following Kramers-Kronig relation.

f()= 'E'(W) 4 - if"(W) (A8.1)

I
d'(W)- =P " d (A8.2)

1l(o = f X -I dx (A8.3)
-r fo - W

Or, in terms of the susceptibility

IE(w) = 1 + 47rX(w.)  (A8.4)

(, p dx (A8.5)

I - 00r ' x)d x ( M4 8 6 )

Now in order to change the integration intervals we make use of the symmetric

properties of the dielectric constant in frequency domain. I

D(w) = f(w)E(,W) (A8.7) I
Taking a Fourier transformation to the time domain, I

D(t) = D(w)e-'dw (.48.8)

E(t) =J E(w) e-od (.48.9)
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Since D(t) is a real function,

J J
D*(t) = D° (,)ei~td.-

=D(t) (AS.10O

Therefore

(A8.11)

'(W I) - iE"()) = ,'(-W) - ie"(-) (A8.12)

Or,
, (w) = E'( -w), e"(.,) -C_',(_-w)(A. (A8.13)

'(w) = x'(- ), x"(w) = -(-) (A8.14)

In conclusion c is an even function of , while e" is an odd function of .

Now using Eq.(AS.14) we can get another form of Kramers-Kronig relation.

1 f0 "(x)

-P 0d x

1 f 'x "(x) d , d

1x"(x)___7 ( 00 x d f 0 x W

="P " dx (A8.15)

and,
2 0 !(,, dx (A8.16)

Eq.(A8.2) and (A8.3) are a pair of K-K relation, and Eq.(A8.5) and (A8.6)

are another pair. The integration interval can be changed to (0, :)o) leading to a
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I

K-K relation Eq.(A8.15) and (A8.16). There exist another form of K-K relation U
between the imaginary and the real part of the linear refractive index. This is the

most useful relation enabling one to get the frequency dependent refractive index

from the linear absorption curve. We make use of a linear relationship between the

magnetic field and the electric field.

;H] = v'!EI = n1 I = (7+ iK)E (A8.17) I

Let ___I

L et (, ) -- 77( w) -- i* ( w) = ,fi = v l- i f" (A 8.18)

E I = 17 2 K2 Ell = 2rIK (A8.19)I

00

7()1 J xK(x) d. (A8.20)

Now the absorption coefficient a(w) is related to the imaginary part of the refractive

index n(w). U
c,(,w) =2K(,w) (A8.21)

Substituting Eq.(A8.21) into Eq.(A8.20) leads to

00
71" 2 (A8.22

Now we look at the qualitative behavior of susceptibilities from the K-K rela- I
tion. From Eqs.(A8.15),(A8.16) we can get a qualitative properties of the Kramers-

Kronig relation. Integrating Eq.(A8.15) (A8.16) by parts,

100 ~ wX (z)dz =ln~z2 -w2IX ' '(z)] j lnIz2 -w 2 dX "(z) d

0dx
= 0I 1 dX"l (Xz) dx (A8.23)I

2_ - 2 X(z)dnI X2(z - jIn - d
00

f0InX 4-U; dX'(x) dx (A8.24) 3
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I

where the first term vanishes from the boundness of physical fields.

I V 1 f dX"(r) In (A8.25)

r = . (z 2 - '02)I "w=- -l / dx(z)<+-wd
i = d ( n I+ Id (A8.26)

I Since both the logarithmic function in the integrand have peaks at x = V, which

means that the derivatives of susceptibilities at x = w have the most of the contri-

I bution to the integrals. Or in another words X'(w;) peaks at the frequency where

,"(X) has the largest positive slope, and X"(w) peaks at the frequency where .'(..,)

I has the largest negative slope.

For example, for the Lorentzian absorption curve,

(W)= (A8.27)~~(W - U.0)2 + (2-)2

1 2
the real part of susceptibility peaks at

Wo = WO (A48.28)f- 2

For a Gaussian absorption curve
z2

xoe- -r (A8.29)

I the real part of susceptibility peaks at
O"

W = W 7 (A8.30)

For a Lorentzian absorption line shape the Kramers-Kronig relation is trivial and

I the real part and imaginary part of the complex refractive index satisfies the K-K

relation trivially. But for the Gaussian absorption line shape it is not trivial to

find the real part of the complex refractive index. The Gaussian lineshape has been

studied long ago in the development of NMR.

X "(W) = xowoT e-T2'(W0- -)'/" (A8.31)
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thenI

Xy(W) = XWT2F(T(wo(A8.32)

whereI

F(x) =e-' 2 Jey2 dy (A8.33)I

0I
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